Matches in SemOpenAlex for { <https://semopenalex.org/work/W2918406957> ?p ?o ?g. }
- W2918406957 endingPage "3745" @default.
- W2918406957 startingPage "3736" @default.
- W2918406957 abstract "The condition of a technical system has been subject to intense scrutiny in recent years. Monitoring the technical condition of a system may be performed by applying different approaches. The main intention of the monitoring is to get the information about the instant system condition, and to estimate and predict reliability measures. In the article, the authors suggest possible ways to process diagnostic measures which have the potential to determine the system condition and to predict its future development. The diagnostic measures are in this case indirect and they are introduced in the form of oil data. The diagnostic data are obtained from the tribodiagnostic system which is composed of kinematic pairs and oil. The analysed oil samples come from the combustion engine of a heavy ground vehicle. The authors focus on the output values in the form of wear particles, iron and lead, and additive particles. The concentration of these particles in the oil is influenced by operating time and calendar time. However, the particles include inherent and natural levels of uncertainty and fuzziness. Therefore, the authors apply and present the models imitating the development of the particles which are based on a fuzzy inference system. Highly valuable and extensive data set records enabled the authors to perform two-dimensional data modelling based both on operation time and calendar time. The obtained results enable us to predict the remaining useful life of the system. Moreover, the results could also be beneficial when modifying hard time scheduled preventive maintenance intervals (e.g. when to change the oil). The major contribution of this paper is the fact that all analysed diagnostic data are not artificial but real; moreover, they were collected for more than 10 years and therefore contain hundreds of records." @default.
- W2918406957 created "2019-03-11" @default.
- W2918406957 creator A5025865382 @default.
- W2918406957 creator A5038899997 @default.
- W2918406957 creator A5071109116 @default.
- W2918406957 date "2019-03-01" @default.
- W2918406957 modified "2023-09-24" @default.
- W2918406957 title "Application of fuzzy inference system for analysis of oil field data to optimize combustion engine maintenance" @default.
- W2918406957 cites W1813770053 @default.
- W2918406957 cites W2002890956 @default.
- W2918406957 cites W2009072760 @default.
- W2918406957 cites W2026573489 @default.
- W2918406957 cites W2046495656 @default.
- W2918406957 cites W2051383181 @default.
- W2918406957 cites W2055873761 @default.
- W2918406957 cites W2059644607 @default.
- W2918406957 cites W2060968857 @default.
- W2918406957 cites W2065775592 @default.
- W2918406957 cites W2068992069 @default.
- W2918406957 cites W2083424229 @default.
- W2918406957 cites W2086471648 @default.
- W2918406957 cites W2089242958 @default.
- W2918406957 cites W2098608159 @default.
- W2918406957 cites W2108898839 @default.
- W2918406957 cites W2110221383 @default.
- W2918406957 cites W2112792689 @default.
- W2918406957 cites W2130915832 @default.
- W2918406957 cites W2131239194 @default.
- W2918406957 cites W2133749571 @default.
- W2918406957 cites W2134153335 @default.
- W2918406957 cites W2140363577 @default.
- W2918406957 cites W2157041604 @default.
- W2918406957 cites W2279039799 @default.
- W2918406957 cites W2324159880 @default.
- W2918406957 cites W2563167163 @default.
- W2918406957 cites W2622634640 @default.
- W2918406957 cites W2770344288 @default.
- W2918406957 cites W2799501716 @default.
- W2918406957 cites W2890970224 @default.
- W2918406957 cites W4240278385 @default.
- W2918406957 cites W4245152641 @default.
- W2918406957 doi "https://doi.org/10.1177/0954407019833521" @default.
- W2918406957 hasPublicationYear "2019" @default.
- W2918406957 type Work @default.
- W2918406957 sameAs 2918406957 @default.
- W2918406957 citedByCount "3" @default.
- W2918406957 countsByYear W29184069572021 @default.
- W2918406957 countsByYear W29184069572022 @default.
- W2918406957 crossrefType "journal-article" @default.
- W2918406957 hasAuthorship W2918406957A5025865382 @default.
- W2918406957 hasAuthorship W2918406957A5038899997 @default.
- W2918406957 hasAuthorship W2918406957A5071109116 @default.
- W2918406957 hasConcept C105923489 @default.
- W2918406957 hasConcept C111919701 @default.
- W2918406957 hasConcept C119599485 @default.
- W2918406957 hasConcept C121332964 @default.
- W2918406957 hasConcept C124101348 @default.
- W2918406957 hasConcept C127413603 @default.
- W2918406957 hasConcept C154945302 @default.
- W2918406957 hasConcept C163258240 @default.
- W2918406957 hasConcept C178790620 @default.
- W2918406957 hasConcept C185592680 @default.
- W2918406957 hasConcept C200601418 @default.
- W2918406957 hasConcept C202444582 @default.
- W2918406957 hasConcept C2775846686 @default.
- W2918406957 hasConcept C2776214188 @default.
- W2918406957 hasConcept C2776907094 @default.
- W2918406957 hasConcept C33923547 @default.
- W2918406957 hasConcept C41008148 @default.
- W2918406957 hasConcept C43214815 @default.
- W2918406957 hasConcept C44013972 @default.
- W2918406957 hasConcept C58166 @default.
- W2918406957 hasConcept C62520636 @default.
- W2918406957 hasConcept C78762247 @default.
- W2918406957 hasConcept C9652623 @default.
- W2918406957 hasConcept C98045186 @default.
- W2918406957 hasConceptScore W2918406957C105923489 @default.
- W2918406957 hasConceptScore W2918406957C111919701 @default.
- W2918406957 hasConceptScore W2918406957C119599485 @default.
- W2918406957 hasConceptScore W2918406957C121332964 @default.
- W2918406957 hasConceptScore W2918406957C124101348 @default.
- W2918406957 hasConceptScore W2918406957C127413603 @default.
- W2918406957 hasConceptScore W2918406957C154945302 @default.
- W2918406957 hasConceptScore W2918406957C163258240 @default.
- W2918406957 hasConceptScore W2918406957C178790620 @default.
- W2918406957 hasConceptScore W2918406957C185592680 @default.
- W2918406957 hasConceptScore W2918406957C200601418 @default.
- W2918406957 hasConceptScore W2918406957C202444582 @default.
- W2918406957 hasConceptScore W2918406957C2775846686 @default.
- W2918406957 hasConceptScore W2918406957C2776214188 @default.
- W2918406957 hasConceptScore W2918406957C2776907094 @default.
- W2918406957 hasConceptScore W2918406957C33923547 @default.
- W2918406957 hasConceptScore W2918406957C41008148 @default.
- W2918406957 hasConceptScore W2918406957C43214815 @default.
- W2918406957 hasConceptScore W2918406957C44013972 @default.
- W2918406957 hasConceptScore W2918406957C58166 @default.
- W2918406957 hasConceptScore W2918406957C62520636 @default.
- W2918406957 hasConceptScore W2918406957C78762247 @default.