Matches in SemOpenAlex for { <https://semopenalex.org/work/W2918455318> ?p ?o ?g. }
- W2918455318 abstract "Phase retrieval refers to the problem of recovering a signal $mathbf{x}_{star}inmathbb{C}^n$ from its phaseless measurements $y_i=|mathbf{a}_i^{mathrm{H}}mathbf{x}_{star}|$, where ${mathbf{a}_i}_{i=1}^m$ are the measurement vectors. Many popular phase retrieval algorithms are based on the following two-step procedure: (i) initialize the algorithm based on a spectral method, (ii) refine the initial estimate by a local search algorithm (e.g., gradient descent). The quality of the spectral initialization step can have a major impact on the performance of the overall algorithm. In this paper, we focus on the model where the measurement matrix $mathbf{A}=[mathbf{a}_1,ldots,mathbf{a}_m]^{mathrm{H}}$ has orthonormal columns, and study the spectral initialization under the asymptotic setting $m,ntoinfty$ with $m/ntodeltain(1,infty)$. We use the expectation propagation framework to characterize the performance of spectral initialization for Haar distributed matrices. Our numerical results confirm that the predictions of the EP method are accurate for not-only Haar distributed matrices, but also for realistic Fourier based models (e.g. the coded diffraction model). The main findings of this paper are the following: (1) There exists a threshold on $delta$ (denoted as $delta_{mathrm{weak}}$) below which the spectral method cannot produce a meaningful estimate. We show that $delta_{mathrm{weak}}=2$ for the column-orthonormal model. In contrast, previous results by Mondelli and Montanari show that $delta_{mathrm{weak}}=1$ for the i.i.d. Gaussian model. (2) The optimal design for the spectral method coincides with that for the i.i.d. Gaussian model, where the latter was recently introduced by Luo, Alghamdi and Lu." @default.
- W2918455318 created "2019-03-11" @default.
- W2918455318 creator A5017771205 @default.
- W2918455318 creator A5023545041 @default.
- W2918455318 creator A5040205022 @default.
- W2918455318 creator A5042980276 @default.
- W2918455318 creator A5061942819 @default.
- W2918455318 date "2019-03-06" @default.
- W2918455318 modified "2023-09-26" @default.
- W2918455318 title "Spectral Method for Phase Retrieval: an Expectation Propagation Perspective" @default.
- W2918455318 cites W1625271478 @default.
- W2918455318 cites W1934021597 @default.
- W2918455318 cites W1976078268 @default.
- W2918455318 cites W2000828982 @default.
- W2918455318 cites W2015911499 @default.
- W2918455318 cites W2044613770 @default.
- W2918455318 cites W2067125243 @default.
- W2918455318 cites W2078397124 @default.
- W2918455318 cites W2081785908 @default.
- W2918455318 cites W2082029531 @default.
- W2918455318 cites W2123202508 @default.
- W2918455318 cites W2140966562 @default.
- W2918455318 cites W2158746276 @default.
- W2918455318 cites W2160051394 @default.
- W2918455318 cites W2310197699 @default.
- W2918455318 cites W2399198888 @default.
- W2918455318 cites W2479365550 @default.
- W2918455318 cites W2542482481 @default.
- W2918455318 cites W2603333836 @default.
- W2918455318 cites W2750338112 @default.
- W2918455318 cites W2776751579 @default.
- W2918455318 cites W2782005967 @default.
- W2918455318 cites W2782997084 @default.
- W2918455318 cites W2899900971 @default.
- W2918455318 cites W2945463326 @default.
- W2918455318 cites W2962714615 @default.
- W2918455318 cites W2962760202 @default.
- W2918455318 cites W2963050343 @default.
- W2918455318 cites W2963073572 @default.
- W2918455318 cites W2963519307 @default.
- W2918455318 cites W2963521429 @default.
- W2918455318 cites W2963841451 @default.
- W2918455318 cites W2964262188 @default.
- W2918455318 cites W2980141162 @default.
- W2918455318 cites W3012452232 @default.
- W2918455318 cites W3098848552 @default.
- W2918455318 cites W3100688274 @default.
- W2918455318 cites W3102206315 @default.
- W2918455318 cites W3106678933 @default.
- W2918455318 cites W568673721 @default.
- W2918455318 doi "https://doi.org/10.48550/arxiv.1903.02505" @default.
- W2918455318 hasPublicationYear "2019" @default.
- W2918455318 type Work @default.
- W2918455318 sameAs 2918455318 @default.
- W2918455318 citedByCount "4" @default.
- W2918455318 countsByYear W29184553182019 @default.
- W2918455318 countsByYear W29184553182020 @default.
- W2918455318 countsByYear W29184553182022 @default.
- W2918455318 crossrefType "posted-content" @default.
- W2918455318 hasAuthorship W2918455318A5017771205 @default.
- W2918455318 hasAuthorship W2918455318A5023545041 @default.
- W2918455318 hasAuthorship W2918455318A5040205022 @default.
- W2918455318 hasAuthorship W2918455318A5042980276 @default.
- W2918455318 hasAuthorship W2918455318A5061942819 @default.
- W2918455318 hasBestOaLocation W29184553181 @default.
- W2918455318 hasConcept C102519508 @default.
- W2918455318 hasConcept C106487976 @default.
- W2918455318 hasConcept C11413529 @default.
- W2918455318 hasConcept C114466953 @default.
- W2918455318 hasConcept C114614502 @default.
- W2918455318 hasConcept C121332964 @default.
- W2918455318 hasConcept C153258448 @default.
- W2918455318 hasConcept C154945302 @default.
- W2918455318 hasConcept C159985019 @default.
- W2918455318 hasConcept C187029792 @default.
- W2918455318 hasConcept C192562407 @default.
- W2918455318 hasConcept C199360897 @default.
- W2918455318 hasConcept C2780897414 @default.
- W2918455318 hasConcept C33923547 @default.
- W2918455318 hasConcept C41008148 @default.
- W2918455318 hasConcept C44870925 @default.
- W2918455318 hasConcept C47432892 @default.
- W2918455318 hasConcept C50644808 @default.
- W2918455318 hasConcept C5806529 @default.
- W2918455318 hasConcept C62520636 @default.
- W2918455318 hasConcept C81793267 @default.
- W2918455318 hasConceptScore W2918455318C102519508 @default.
- W2918455318 hasConceptScore W2918455318C106487976 @default.
- W2918455318 hasConceptScore W2918455318C11413529 @default.
- W2918455318 hasConceptScore W2918455318C114466953 @default.
- W2918455318 hasConceptScore W2918455318C114614502 @default.
- W2918455318 hasConceptScore W2918455318C121332964 @default.
- W2918455318 hasConceptScore W2918455318C153258448 @default.
- W2918455318 hasConceptScore W2918455318C154945302 @default.
- W2918455318 hasConceptScore W2918455318C159985019 @default.
- W2918455318 hasConceptScore W2918455318C187029792 @default.
- W2918455318 hasConceptScore W2918455318C192562407 @default.
- W2918455318 hasConceptScore W2918455318C199360897 @default.
- W2918455318 hasConceptScore W2918455318C2780897414 @default.
- W2918455318 hasConceptScore W2918455318C33923547 @default.