Matches in SemOpenAlex for { <https://semopenalex.org/work/W2918460052> ?p ?o ?g. }
- W2918460052 endingPage "1824" @default.
- W2918460052 startingPage "1814" @default.
- W2918460052 abstract "Industrial processes generally have various operation modes, and fault detection for such processes is important. This paper proposes a method that integrates a variational Bayesian Gaussian mixture model with canonical correlation analysis (VBGMM-CCA) for efficient multimode process monitoring. The proposed VBGMM-CCA method maximizes the advantage of VBGMM in automatic mode identification and the superiority of CCA in local fault detection. First, VBGMM is applied to unlabeled historical process data to determine the number of operation modes and cluster the data in each mode. Second, local CCA models that explore input and output relationships are established. Fault detection residuals are generated in each local CCA model, and monitoring statistics are derived. Finally, a Bayesian inference probability index that integrates monitoring results from all local models is developed to increase the monitoring robustness. The effectiveness of the proposed monitoring scheme is verified through experimental studies on a numerical example and the multiphase batch-fed penicillin fermentation process." @default.
- W2918460052 created "2019-03-11" @default.
- W2918460052 creator A5000809799 @default.
- W2918460052 creator A5033312589 @default.
- W2918460052 date "2019-10-01" @default.
- W2918460052 modified "2023-10-16" @default.
- W2918460052 title "Multimode Process Monitoring Using Variational Bayesian Inference and Canonical Correlation Analysis" @default.
- W2918460052 cites W1790534215 @default.
- W2918460052 cites W1978994389 @default.
- W2918460052 cites W2015245929 @default.
- W2918460052 cites W2036887017 @default.
- W2918460052 cites W2039839604 @default.
- W2918460052 cites W2040251481 @default.
- W2918460052 cites W2044610659 @default.
- W2918460052 cites W2047138503 @default.
- W2918460052 cites W2064110888 @default.
- W2918460052 cites W2072405524 @default.
- W2918460052 cites W2088540877 @default.
- W2918460052 cites W2106849258 @default.
- W2918460052 cites W2110227608 @default.
- W2918460052 cites W2120211304 @default.
- W2918460052 cites W2169347809 @default.
- W2918460052 cites W2201427885 @default.
- W2918460052 cites W2217088832 @default.
- W2918460052 cites W2296641122 @default.
- W2918460052 cites W2301441242 @default.
- W2918460052 cites W2314697109 @default.
- W2918460052 cites W2318720141 @default.
- W2918460052 cites W2484370266 @default.
- W2918460052 cites W2494112937 @default.
- W2918460052 cites W2514088303 @default.
- W2918460052 cites W2547908407 @default.
- W2918460052 cites W2588306484 @default.
- W2918460052 cites W2605407782 @default.
- W2918460052 cites W2608273225 @default.
- W2918460052 cites W2612869868 @default.
- W2918460052 cites W2737846508 @default.
- W2918460052 cites W2741385306 @default.
- W2918460052 cites W2754813553 @default.
- W2918460052 cites W2757109865 @default.
- W2918460052 cites W2772343646 @default.
- W2918460052 cites W2772437201 @default.
- W2918460052 cites W2774720381 @default.
- W2918460052 cites W2777815485 @default.
- W2918460052 cites W2790678878 @default.
- W2918460052 cites W2792972374 @default.
- W2918460052 cites W2888588474 @default.
- W2918460052 cites W2895581072 @default.
- W2918460052 cites W2897534289 @default.
- W2918460052 cites W2903722520 @default.
- W2918460052 cites W4249625715 @default.
- W2918460052 doi "https://doi.org/10.1109/tase.2019.2897477" @default.
- W2918460052 hasPublicationYear "2019" @default.
- W2918460052 type Work @default.
- W2918460052 sameAs 2918460052 @default.
- W2918460052 citedByCount "49" @default.
- W2918460052 countsByYear W29184600522019 @default.
- W2918460052 countsByYear W29184600522020 @default.
- W2918460052 countsByYear W29184600522021 @default.
- W2918460052 countsByYear W29184600522022 @default.
- W2918460052 countsByYear W29184600522023 @default.
- W2918460052 crossrefType "journal-article" @default.
- W2918460052 hasAuthorship W2918460052A5000809799 @default.
- W2918460052 hasAuthorship W2918460052A5033312589 @default.
- W2918460052 hasConcept C104317684 @default.
- W2918460052 hasConcept C107673813 @default.
- W2918460052 hasConcept C11413529 @default.
- W2918460052 hasConcept C121332964 @default.
- W2918460052 hasConcept C124101348 @default.
- W2918460052 hasConcept C152745839 @default.
- W2918460052 hasConcept C153874254 @default.
- W2918460052 hasConcept C154945302 @default.
- W2918460052 hasConcept C160234255 @default.
- W2918460052 hasConcept C163716315 @default.
- W2918460052 hasConcept C172707124 @default.
- W2918460052 hasConcept C185592680 @default.
- W2918460052 hasConcept C2776214188 @default.
- W2918460052 hasConcept C41008148 @default.
- W2918460052 hasConcept C55493867 @default.
- W2918460052 hasConcept C61224824 @default.
- W2918460052 hasConcept C61326573 @default.
- W2918460052 hasConcept C62520636 @default.
- W2918460052 hasConcept C63479239 @default.
- W2918460052 hasConceptScore W2918460052C104317684 @default.
- W2918460052 hasConceptScore W2918460052C107673813 @default.
- W2918460052 hasConceptScore W2918460052C11413529 @default.
- W2918460052 hasConceptScore W2918460052C121332964 @default.
- W2918460052 hasConceptScore W2918460052C124101348 @default.
- W2918460052 hasConceptScore W2918460052C152745839 @default.
- W2918460052 hasConceptScore W2918460052C153874254 @default.
- W2918460052 hasConceptScore W2918460052C154945302 @default.
- W2918460052 hasConceptScore W2918460052C160234255 @default.
- W2918460052 hasConceptScore W2918460052C163716315 @default.
- W2918460052 hasConceptScore W2918460052C172707124 @default.
- W2918460052 hasConceptScore W2918460052C185592680 @default.
- W2918460052 hasConceptScore W2918460052C2776214188 @default.
- W2918460052 hasConceptScore W2918460052C41008148 @default.
- W2918460052 hasConceptScore W2918460052C55493867 @default.