Matches in SemOpenAlex for { <https://semopenalex.org/work/W2918674296> ?p ?o ?g. }
- W2918674296 endingPage "417" @default.
- W2918674296 startingPage "403" @default.
- W2918674296 abstract "Chlorite is a ubiquitous product of metamorphism, alteration of magmatic rocks and hydrothermal processes owing to its large stability field and wide compositional range. Its composition is governed by several substitutions and has been used as a geothermometer, on the basis of empirical, semi-empirical, and thermodynamic models. As in some other phyllosilicates of petrological interest, the oxidation state of iron in chlorite may differ from the usually assumed divalent state. However, the crystal chemistry of trivalent iron in chlorite remains poorly known, and the thermodynamic properties of ferric chlorite are missing from databases used for petrological modeling. As part of an attempt to fill this gap, we present results from in situ, micrometer-scale measurements of the oxidation state of iron in various chlorite-bearing samples. X-ray absorption near-edge spectroscopy (XANES) was combined with electron probe microanalysis (EPMA) on the same crystals. Results show iron oxidation states varying from ferrous to ferric; iron is in octahedral coordination in all ferromagnesian chlorites but to ~25% tetrahedral in the lithian chlorite cookeite (1.0 wt% Fe2O3(total)). Absolute amounts of ferric iron cover an unprecedented range (0 to ~30 wt% Fe2O3). For highly magnesian, ferric chlorite, Fe concentrations are low and can be accounted for by Al = Fe3+ substitution. In Fe-rich samples, Fe3+ may exceed 2 atoms per formula unit (pfu, 18 oxygen basis). When structural formulas are normalized to 28 charges corresponding to the standard O10(OH)8 anionic basis, these measurements define the exchange vector of a di-trioctahedral-type substitution: 3 VI(Mg, Fe2+) = VI□ + 2 VIFe3+, as described in earlier studies. However, structural formulas calculated on the basis of the oxygen contents actually measured by EPMA show that this trend is an artifact, due to the neglect of variations in the number of protons in the structure. Our measurements indicate increasing hydrogen deficiency with increasing Fe3+ content, up to ~ 2 H+ pfu in the Fe3+-rich chlorite samples, corresponding to a net exchange vector of the type R2+ + H+ = Fe3+. These results do not support substitutions toward di-trioctahedral ferric end-members, and highlight the need for considering substitution toward an “oxychlorite” (i.e., H-deficient) ferric component, close to tri-trioctahedral, with an O12(OH)6 anionic basis, even in green, pristine-looking chlorite. The effects of iron oxidation and H deficiency on chlorite geothermometers were explored. They are deterring if H deficiency is ignored but, given the sensitivity of most thermometers to octahedral vacancy, the assumption Fetotal = Fe2+ is still safer than using high measured Fe3+ contents and the standard 28 charge basis, which artificially increases vacancies. In such ferric chlorites, EPMA measurement of oxygen allows a fair estimate of H content if Fe3+/Fe2+ is known; it should be more systematically implemented. For the same reasons, literature data reporting Fe3+-rich chlorite with vacancy content along the possibly artificial di-trioctahedral-type substitution should be verified. With the help of constraints from thermodynamic models, charge balance, crystal symmetry, and proton loss, a new cation site distribution is proposed for di-tri- to tri-trioctahedral chlorites in the Fe2+-Fe3+-Mg-Al-Si-O-H system, allowing a more realistic thermodynamic handling of their solid solutions." @default.
- W2918674296 created "2019-03-11" @default.
- W2918674296 creator A5006290581 @default.
- W2918674296 creator A5075775772 @default.
- W2918674296 creator A5075779160 @default.
- W2918674296 creator A5080140980 @default.
- W2918674296 creator A5084529173 @default.
- W2918674296 creator A5091334507 @default.
- W2918674296 date "2019-03-01" @default.
- W2918674296 modified "2023-10-18" @default.
- W2918674296 title "A XANES and EPMA study of Fe3+ in chlorite: Importance of oxychlorite and implications for cation site distribution and thermobarometry" @default.
- W2918674296 cites W1830358639 @default.
- W2918674296 cites W1862903347 @default.
- W2918674296 cites W1887908355 @default.
- W2918674296 cites W1968791405 @default.
- W2918674296 cites W1971635247 @default.
- W2918674296 cites W1974140605 @default.
- W2918674296 cites W1974719815 @default.
- W2918674296 cites W1979083140 @default.
- W2918674296 cites W1984057167 @default.
- W2918674296 cites W1996421731 @default.
- W2918674296 cites W2001603968 @default.
- W2918674296 cites W2004475850 @default.
- W2918674296 cites W2004897128 @default.
- W2918674296 cites W2009463305 @default.
- W2918674296 cites W2013769503 @default.
- W2918674296 cites W2014803956 @default.
- W2918674296 cites W2016013868 @default.
- W2918674296 cites W2020305505 @default.
- W2918674296 cites W2020803728 @default.
- W2918674296 cites W2034003688 @default.
- W2918674296 cites W2048766006 @default.
- W2918674296 cites W2052425876 @default.
- W2918674296 cites W2054453464 @default.
- W2918674296 cites W2056118219 @default.
- W2918674296 cites W2059091713 @default.
- W2918674296 cites W2059359385 @default.
- W2918674296 cites W2059747435 @default.
- W2918674296 cites W2060927870 @default.
- W2918674296 cites W2063768770 @default.
- W2918674296 cites W2074410446 @default.
- W2918674296 cites W2078353661 @default.
- W2918674296 cites W2082285804 @default.
- W2918674296 cites W2082645751 @default.
- W2918674296 cites W2088547125 @default.
- W2918674296 cites W2090688518 @default.
- W2918674296 cites W2096251887 @default.
- W2918674296 cites W2098326014 @default.
- W2918674296 cites W2106812845 @default.
- W2918674296 cites W2106962515 @default.
- W2918674296 cites W2115733899 @default.
- W2918674296 cites W2117910804 @default.
- W2918674296 cites W2118015150 @default.
- W2918674296 cites W2129655405 @default.
- W2918674296 cites W2132925139 @default.
- W2918674296 cites W2138822821 @default.
- W2918674296 cites W2141890535 @default.
- W2918674296 cites W2167590372 @default.
- W2918674296 cites W2169780533 @default.
- W2918674296 cites W2221214712 @default.
- W2918674296 cites W2303042025 @default.
- W2918674296 cites W2310650642 @default.
- W2918674296 cites W2319146553 @default.
- W2918674296 cites W2328438227 @default.
- W2918674296 cites W2331364526 @default.
- W2918674296 cites W2332794823 @default.
- W2918674296 cites W2336345033 @default.
- W2918674296 cites W2339510751 @default.
- W2918674296 cites W2341951700 @default.
- W2918674296 cites W2394816508 @default.
- W2918674296 cites W2502729337 @default.
- W2918674296 cites W2519704558 @default.
- W2918674296 cites W2561250152 @default.
- W2918674296 cites W2563780033 @default.
- W2918674296 cites W2569263730 @default.
- W2918674296 cites W2584821101 @default.
- W2918674296 cites W2621154493 @default.
- W2918674296 cites W2791577554 @default.
- W2918674296 cites W2809336354 @default.
- W2918674296 cites W4242381076 @default.
- W2918674296 cites W4249177583 @default.
- W2918674296 doi "https://doi.org/10.2138/am-2019-6766" @default.
- W2918674296 hasPublicationYear "2019" @default.
- W2918674296 type Work @default.
- W2918674296 sameAs 2918674296 @default.
- W2918674296 citedByCount "17" @default.
- W2918674296 countsByYear W29186742962020 @default.
- W2918674296 countsByYear W29186742962021 @default.
- W2918674296 countsByYear W29186742962022 @default.
- W2918674296 countsByYear W29186742962023 @default.
- W2918674296 crossrefType "journal-article" @default.
- W2918674296 hasAuthorship W2918674296A5006290581 @default.
- W2918674296 hasAuthorship W2918674296A5075775772 @default.
- W2918674296 hasAuthorship W2918674296A5075779160 @default.
- W2918674296 hasAuthorship W2918674296A5080140980 @default.
- W2918674296 hasAuthorship W2918674296A5084529173 @default.
- W2918674296 hasAuthorship W2918674296A5091334507 @default.
- W2918674296 hasBestOaLocation W29186742962 @default.