Matches in SemOpenAlex for { <https://semopenalex.org/work/W2918686237> ?p ?o ?g. }
- W2918686237 endingPage "3727" @default.
- W2918686237 startingPage "3713" @default.
- W2918686237 abstract "The demands on a sensory system depend not only on the statistics of its inputs but also on the task. In olfactory navigation, for example, the task is to find the plume source; allocation of sensory resources may therefore be driven by aspects of the plume that are informative about source location, rather than concentration per se. Here we explore the implications of this idea for encoding odor concentration. To formalize the notion that sensory resources are limited, we considered coding strategies that partitioned the odor concentration range into a set of discriminable intervals. We developed a dynamic programming algorithm that, given the distribution of odor concentrations at several locations, determines the partitioning that conveys the most information about location. We applied this analysis to planar laser-induced fluorescence measurements of spatiotemporal odor fields with realistic advection speeds (5-20 cm/s), with or without a nearby boundary or obstacle. Across all environments, the optimal coding strategy allocated more resources (i.e., more and finer discriminable intervals) to the upper end of the concentration range than would be expected from histogram equalization, the optimal strategy if the goal were to reconstruct the plume, rather than to navigate. Finally, we show that ligand binding, as captured by the Hill equation, transforms odorant concentration into response levels in a way that approximates information maximization for navigation. This behavior occurs when the Hill dissociation constant is near the mean odor concentration, an adaptive set-point that has been observed in the olfactory system of flies.SIGNIFICANCE STATEMENT The first step of olfactory processing is receptor binding, and the resulting relationship between odorant concentration and the bound receptor fraction is a saturating one. While this Hill nonlinearity can be viewed as a distortion that is imposed by the biophysics of receptor binding, here we show that it also plays an important information-processing role in olfactory navigation. Specifically, by combining a novel dynamic-programming algorithm with physical measurements of turbulent plumes, we determine the optimal strategy for encoding odor concentration when the goal is to determine location. This strategy is distinct from histogram equalization, the strategy that maximizes information about plume concentration, and is closely approximated by the Hill nonlinearity when the binding constant is near the ambient mean." @default.
- W2918686237 created "2019-03-11" @default.
- W2918686237 creator A5031763874 @default.
- W2918686237 creator A5039369482 @default.
- W2918686237 creator A5046847122 @default.
- W2918686237 creator A5061619780 @default.
- W2918686237 creator A5076389348 @default.
- W2918686237 creator A5081979901 @default.
- W2918686237 date "2019-03-07" @default.
- W2918686237 modified "2023-10-14" @default.
- W2918686237 title "Olfactory Navigation and the Receptor Nonlinearity" @default.
- W2918686237 cites W1528822345 @default.
- W2918686237 cites W1549546882 @default.
- W2918686237 cites W1977574747 @default.
- W2918686237 cites W1979993385 @default.
- W2918686237 cites W1989635395 @default.
- W2918686237 cites W1991433684 @default.
- W2918686237 cites W1998515992 @default.
- W2918686237 cites W2003864474 @default.
- W2918686237 cites W2004573605 @default.
- W2918686237 cites W2020604100 @default.
- W2918686237 cites W2043052802 @default.
- W2918686237 cites W2046695302 @default.
- W2918686237 cites W2056308384 @default.
- W2918686237 cites W2063731290 @default.
- W2918686237 cites W2075516846 @default.
- W2918686237 cites W2091183380 @default.
- W2918686237 cites W2093753070 @default.
- W2918686237 cites W2095087224 @default.
- W2918686237 cites W2099586601 @default.
- W2918686237 cites W2129046573 @default.
- W2918686237 cites W2133351202 @default.
- W2918686237 cites W2135952358 @default.
- W2918686237 cites W2138260451 @default.
- W2918686237 cites W2142273372 @default.
- W2918686237 cites W2143604818 @default.
- W2918686237 cites W2145889472 @default.
- W2918686237 cites W2147196358 @default.
- W2918686237 cites W2169623616 @default.
- W2918686237 cites W2170743924 @default.
- W2918686237 cites W2257267783 @default.
- W2918686237 cites W2317688932 @default.
- W2918686237 cites W2726159424 @default.
- W2918686237 cites W2789114802 @default.
- W2918686237 cites W2802640249 @default.
- W2918686237 cites W2835909016 @default.
- W2918686237 cites W2911638064 @default.
- W2918686237 cites W2950581604 @default.
- W2918686237 cites W2952786843 @default.
- W2918686237 cites W4244066891 @default.
- W2918686237 doi "https://doi.org/10.1523/jneurosci.2512-18.2019" @default.
- W2918686237 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6510337" @default.
- W2918686237 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30846614" @default.
- W2918686237 hasPublicationYear "2019" @default.
- W2918686237 type Work @default.
- W2918686237 sameAs 2918686237 @default.
- W2918686237 citedByCount "19" @default.
- W2918686237 countsByYear W29186862372020 @default.
- W2918686237 countsByYear W29186862372021 @default.
- W2918686237 countsByYear W29186862372022 @default.
- W2918686237 countsByYear W29186862372023 @default.
- W2918686237 crossrefType "journal-article" @default.
- W2918686237 hasAuthorship W2918686237A5031763874 @default.
- W2918686237 hasAuthorship W2918686237A5039369482 @default.
- W2918686237 hasAuthorship W2918686237A5046847122 @default.
- W2918686237 hasAuthorship W2918686237A5061619780 @default.
- W2918686237 hasAuthorship W2918686237A5076389348 @default.
- W2918686237 hasAuthorship W2918686237A5081979901 @default.
- W2918686237 hasBestOaLocation W29186862371 @default.
- W2918686237 hasConcept C11413529 @default.
- W2918686237 hasConcept C126255220 @default.
- W2918686237 hasConcept C153180895 @default.
- W2918686237 hasConcept C154945302 @default.
- W2918686237 hasConcept C169760540 @default.
- W2918686237 hasConcept C177264268 @default.
- W2918686237 hasConcept C178790620 @default.
- W2918686237 hasConcept C185592680 @default.
- W2918686237 hasConcept C186060115 @default.
- W2918686237 hasConcept C199360897 @default.
- W2918686237 hasConcept C2776330181 @default.
- W2918686237 hasConcept C2778916471 @default.
- W2918686237 hasConcept C33923547 @default.
- W2918686237 hasConcept C41008148 @default.
- W2918686237 hasConcept C86803240 @default.
- W2918686237 hasConcept C94487597 @default.
- W2918686237 hasConceptScore W2918686237C11413529 @default.
- W2918686237 hasConceptScore W2918686237C126255220 @default.
- W2918686237 hasConceptScore W2918686237C153180895 @default.
- W2918686237 hasConceptScore W2918686237C154945302 @default.
- W2918686237 hasConceptScore W2918686237C169760540 @default.
- W2918686237 hasConceptScore W2918686237C177264268 @default.
- W2918686237 hasConceptScore W2918686237C178790620 @default.
- W2918686237 hasConceptScore W2918686237C185592680 @default.
- W2918686237 hasConceptScore W2918686237C186060115 @default.
- W2918686237 hasConceptScore W2918686237C199360897 @default.
- W2918686237 hasConceptScore W2918686237C2776330181 @default.
- W2918686237 hasConceptScore W2918686237C2778916471 @default.
- W2918686237 hasConceptScore W2918686237C33923547 @default.