Matches in SemOpenAlex for { <https://semopenalex.org/work/W2918773003> ?p ?o ?g. }
- W2918773003 abstract "Modern magnetic microscopy (MM) provides high-resolution, ultra-high-sensitivity moment magnetometry, with the ability to measure at spatial resolutions better than $$10^{-4}$$ m and to detect magnetic moments weaker than $$10^{-15}$$ Am $$^2$$ . These characteristics make modern MM devices capable of particularly high-resolution analysis of the magnetic properties of materials, but generate extremely large data sets. Many studies utilizing MM attempt to solve an inverse problem to determine the magnitude of the magnetic moments that produce the measured component of the magnetic field. Fast Fourier techniques in the frequency domain and non-negative least-squares (NNLS) methods in the spatial domain are the two most frequently used methods to solve this inverse problem. Although extremely fast, Fourier techniques can produce solutions that violate the non-negativity of moments constraint. Inversions in the spatial domain do not violate non-negativity constraints, but the execution times of standard NNLS solvers (the Lawson and Hanson method and Matlab’s lsqlin) prohibit spatial domain inversions from operating at the full spatial resolution of an MM. In this paper, we present the applicability of the TNT-NN algorithm, a newly developed NNLS active set method, as a means to directly address the NNLS routine hindering existing spatial domain inversion methods. The TNT-NN algorithm enhances the performance of spatial domain inversions by accelerating the core NNLS routine. Using a conventional computing system, we show that the TNT-NN algorithm produces solutions with residuals comparable to conventional methods while reducing execution time of spatial domain inversions from months to hours or less. Using isothermal remanent magnetization measurements of multiple synthetic and natural samples, we show that the capabilities of the TNT-NN algorithm allow scans with sizes that made them previously inaccesible to NNLS techniques to be inverted. Ultimately, the TNT-NN algorithm enables spatial domain inversions of MM data on an accelerated timescale that renders spatial domain analyses for modern MM studies practical. In particular, this new technique enables MM experiments that would have required an impractical amount of inversion time such as high-resolution stepwise magnetization and demagnetization and 3-dimensional inversions." @default.
- W2918773003 created "2019-03-11" @default.
- W2918773003 creator A5000070232 @default.
- W2918773003 creator A5020813490 @default.
- W2918773003 creator A5023308997 @default.
- W2918773003 creator A5057088337 @default.
- W2918773003 creator A5067396876 @default.
- W2918773003 creator A5083147501 @default.
- W2918773003 date "2019-02-04" @default.
- W2918773003 modified "2023-10-17" @default.
- W2918773003 title "Using TNT-NN to unlock the fast full spatial inversion of large magnetic microscopy data sets" @default.
- W2918773003 cites W127807297 @default.
- W2918773003 cites W1506342804 @default.
- W2918773003 cites W1519735363 @default.
- W2918773003 cites W1536568822 @default.
- W2918773003 cites W1584813970 @default.
- W2918773003 cites W1589154916 @default.
- W2918773003 cites W1680191312 @default.
- W2918773003 cites W1940165307 @default.
- W2918773003 cites W1963530754 @default.
- W2918773003 cites W1964699038 @default.
- W2918773003 cites W1965270302 @default.
- W2918773003 cites W1968627818 @default.
- W2918773003 cites W1974574084 @default.
- W2918773003 cites W1975035693 @default.
- W2918773003 cites W1977329477 @default.
- W2918773003 cites W1980999210 @default.
- W2918773003 cites W1983844138 @default.
- W2918773003 cites W1987627418 @default.
- W2918773003 cites W1989314419 @default.
- W2918773003 cites W1990538005 @default.
- W2918773003 cites W1991096201 @default.
- W2918773003 cites W1991626820 @default.
- W2918773003 cites W1995331797 @default.
- W2918773003 cites W1997019155 @default.
- W2918773003 cites W1997889185 @default.
- W2918773003 cites W1999659947 @default.
- W2918773003 cites W2004755595 @default.
- W2918773003 cites W2005533555 @default.
- W2918773003 cites W2006763798 @default.
- W2918773003 cites W2009769719 @default.
- W2918773003 cites W2011890293 @default.
- W2918773003 cites W2020804487 @default.
- W2918773003 cites W2034671836 @default.
- W2918773003 cites W2035643953 @default.
- W2918773003 cites W2039002282 @default.
- W2918773003 cites W2039449543 @default.
- W2918773003 cites W2041091843 @default.
- W2918773003 cites W2041625030 @default.
- W2918773003 cites W2051527889 @default.
- W2918773003 cites W2052841780 @default.
- W2918773003 cites W2058073282 @default.
- W2918773003 cites W2060811940 @default.
- W2918773003 cites W2061171222 @default.
- W2918773003 cites W2067937769 @default.
- W2918773003 cites W2071759695 @default.
- W2918773003 cites W2075665712 @default.
- W2918773003 cites W2091576510 @default.
- W2918773003 cites W2091807621 @default.
- W2918773003 cites W2093011505 @default.
- W2918773003 cites W2096682952 @default.
- W2918773003 cites W2098098075 @default.
- W2918773003 cites W2104950260 @default.
- W2918773003 cites W2113642685 @default.
- W2918773003 cites W2116333883 @default.
- W2918773003 cites W2126433637 @default.
- W2918773003 cites W2130228818 @default.
- W2918773003 cites W2143909904 @default.
- W2918773003 cites W2145096794 @default.
- W2918773003 cites W2160349706 @default.
- W2918773003 cites W2162322364 @default.
- W2918773003 cites W2169150754 @default.
- W2918773003 cites W2232994685 @default.
- W2918773003 cites W2400744812 @default.
- W2918773003 cites W2408445273 @default.
- W2918773003 cites W2505859409 @default.
- W2918773003 cites W2523427163 @default.
- W2918773003 cites W2553644663 @default.
- W2918773003 cites W2578390297 @default.
- W2918773003 cites W2612309431 @default.
- W2918773003 cites W2621942241 @default.
- W2918773003 cites W2625175538 @default.
- W2918773003 cites W2630895367 @default.
- W2918773003 cites W2792218352 @default.
- W2918773003 cites W2793788753 @default.
- W2918773003 cites W2796464393 @default.
- W2918773003 cites W2887352616 @default.
- W2918773003 cites W3106228167 @default.
- W2918773003 cites W3124604814 @default.
- W2918773003 cites W36826159 @default.
- W2918773003 cites W4211249630 @default.
- W2918773003 cites W4231150350 @default.
- W2918773003 cites W4250589301 @default.
- W2918773003 cites W4320800818 @default.
- W2918773003 doi "https://doi.org/10.1186/s40623-019-0988-8" @default.
- W2918773003 hasPublicationYear "2019" @default.
- W2918773003 type Work @default.
- W2918773003 sameAs 2918773003 @default.
- W2918773003 citedByCount "5" @default.
- W2918773003 countsByYear W29187730032019 @default.