Matches in SemOpenAlex for { <https://semopenalex.org/work/W2918897580> ?p ?o ?g. }
- W2918897580 endingPage "293" @default.
- W2918897580 startingPage "280" @default.
- W2918897580 abstract "The estimation of topsoil water content is of primary interest in the framework of precision farming, but, in general, such assessment is costly and complicated by several interfering factors which do not allow an accurate prediction. Proximal sensing can provide suitable technological facilities to support researchers and technicians in this task. GPR and EMI sensors are valuable instruments as they can provide very informative covariates to be used for improving soil water content estimation. In the present work, it was explored the single (EMI or GPR) and the combined (EMI + GPR) contribution of these proximal data sources. Furthermore, geostatistical (Ordinary Kriging and Kriging with external drift) and linear mixed effects models were applied to compare their respective predictive capabilities. As a result, GPR demonstrated to be more effective in estimating topsoil water content with respect to EMI but, combining both the information, an improvement in the prediction accuracy was observed. Moreover, adding more covariates in the models (GPR outcomes or GPR + EMI outcomes) allowed filtering out the structured spatial component of soil water content. Finally, the statistical approaches proved to behave very similarly, with a slight better performance of Kriging with external drift." @default.
- W2918897580 created "2019-03-11" @default.
- W2918897580 creator A5076253427 @default.
- W2918897580 creator A5081005547 @default.
- W2918897580 creator A5087524685 @default.
- W2918897580 date "2019-06-01" @default.
- W2918897580 modified "2023-10-18" @default.
- W2918897580 title "Contribution of EMI and GPR proximal sensing data in soil water content assessment by using linear mixed effects models and geostatistical approaches" @default.
- W2918897580 cites W1493357981 @default.
- W2918897580 cites W1631122009 @default.
- W2918897580 cites W1643664725 @default.
- W2918897580 cites W1881989968 @default.
- W2918897580 cites W1982032690 @default.
- W2918897580 cites W1983822075 @default.
- W2918897580 cites W1985526134 @default.
- W2918897580 cites W1986057253 @default.
- W2918897580 cites W1990094312 @default.
- W2918897580 cites W1995819826 @default.
- W2918897580 cites W2009847233 @default.
- W2918897580 cites W2017010640 @default.
- W2918897580 cites W2025966616 @default.
- W2918897580 cites W2030153741 @default.
- W2918897580 cites W2054394963 @default.
- W2918897580 cites W2056193610 @default.
- W2918897580 cites W2056894411 @default.
- W2918897580 cites W2059345907 @default.
- W2918897580 cites W2066286115 @default.
- W2918897580 cites W2066611652 @default.
- W2918897580 cites W2074856897 @default.
- W2918897580 cites W2076094691 @default.
- W2918897580 cites W2077012665 @default.
- W2918897580 cites W2077803064 @default.
- W2918897580 cites W2080539185 @default.
- W2918897580 cites W2085292379 @default.
- W2918897580 cites W2091259694 @default.
- W2918897580 cites W2110853045 @default.
- W2918897580 cites W2125282090 @default.
- W2918897580 cites W2130829682 @default.
- W2918897580 cites W2140120534 @default.
- W2918897580 cites W2143390819 @default.
- W2918897580 cites W2144051257 @default.
- W2918897580 cites W2145488820 @default.
- W2918897580 cites W2147625840 @default.
- W2918897580 cites W2190233813 @default.
- W2918897580 cites W2276439978 @default.
- W2918897580 cites W2491907633 @default.
- W2918897580 cites W2496675188 @default.
- W2918897580 cites W2502625193 @default.
- W2918897580 cites W2527425384 @default.
- W2918897580 cites W2727783716 @default.
- W2918897580 cites W2765513770 @default.
- W2918897580 cites W40397213 @default.
- W2918897580 doi "https://doi.org/10.1016/j.geoderma.2019.01.030" @default.
- W2918897580 hasPublicationYear "2019" @default.
- W2918897580 type Work @default.
- W2918897580 sameAs 2918897580 @default.
- W2918897580 citedByCount "14" @default.
- W2918897580 countsByYear W29188975802019 @default.
- W2918897580 countsByYear W29188975802020 @default.
- W2918897580 countsByYear W29188975802021 @default.
- W2918897580 countsByYear W29188975802022 @default.
- W2918897580 countsByYear W29188975802023 @default.
- W2918897580 crossrefType "journal-article" @default.
- W2918897580 hasAuthorship W2918897580A5076253427 @default.
- W2918897580 hasAuthorship W2918897580A5081005547 @default.
- W2918897580 hasAuthorship W2918897580A5087524685 @default.
- W2918897580 hasConcept C119043178 @default.
- W2918897580 hasConcept C119857082 @default.
- W2918897580 hasConcept C127313418 @default.
- W2918897580 hasConcept C159390177 @default.
- W2918897580 hasConcept C159750122 @default.
- W2918897580 hasConcept C184892835 @default.
- W2918897580 hasConcept C20529654 @default.
- W2918897580 hasConcept C39432304 @default.
- W2918897580 hasConcept C41008148 @default.
- W2918897580 hasConcept C43461449 @default.
- W2918897580 hasConcept C554190296 @default.
- W2918897580 hasConcept C62649853 @default.
- W2918897580 hasConcept C71813955 @default.
- W2918897580 hasConcept C76155785 @default.
- W2918897580 hasConcept C81692654 @default.
- W2918897580 hasConceptScore W2918897580C119043178 @default.
- W2918897580 hasConceptScore W2918897580C119857082 @default.
- W2918897580 hasConceptScore W2918897580C127313418 @default.
- W2918897580 hasConceptScore W2918897580C159390177 @default.
- W2918897580 hasConceptScore W2918897580C159750122 @default.
- W2918897580 hasConceptScore W2918897580C184892835 @default.
- W2918897580 hasConceptScore W2918897580C20529654 @default.
- W2918897580 hasConceptScore W2918897580C39432304 @default.
- W2918897580 hasConceptScore W2918897580C41008148 @default.
- W2918897580 hasConceptScore W2918897580C43461449 @default.
- W2918897580 hasConceptScore W2918897580C554190296 @default.
- W2918897580 hasConceptScore W2918897580C62649853 @default.
- W2918897580 hasConceptScore W2918897580C71813955 @default.
- W2918897580 hasConceptScore W2918897580C76155785 @default.
- W2918897580 hasConceptScore W2918897580C81692654 @default.
- W2918897580 hasFunder F4320321873 @default.
- W2918897580 hasFunder F4320325955 @default.