Matches in SemOpenAlex for { <https://semopenalex.org/work/W2918958705> ?p ?o ?g. }
- W2918958705 endingPage "1164" @default.
- W2918958705 startingPage "1164" @default.
- W2918958705 abstract "This paper presents a novel approach for semantic segmentation of building roofs in dense urban environments with a Deep Convolution Neural Network (DCNN) using Chinese Very High Resolution (VHR) satellite (i.e., GF2) imagery. To provide an operational end-to-end approach for accurately mapping build roofs with feature extraction and image segmentation, a fully convolutional DCNN with both convolutional and deconvolutional layers is designed to perform building roof segmentation. We selected typical cities with dense and diverse urban environments in different metropolitan regions of China as study areas, and sample images were collected over cities. High performance GPU-mounted workstations are employed to perform the model training and optimization. With the building roof samples collected over different cities, the predictive model with convolution layers is developed for building roof segmentation. The validation shows that the overall accuracy (OA) and the mean Intersection Over Union (mIOU) of DCNN-based semantic segmentation results are 94.67% and 0.85, respectively, and the CRF-refined segmentation results achieved OA of 94.69% and mIOU of 0.83. The results suggest that the proposed approach is a promising solution for building roof mapping with VHR images over large areas in dense urban environments with different building patterns. With the operational acquisition of GF2 VHR imagery, it is expected to develop an automated pipeline of operational built-up area monitoring, and the timely update of building roof map could be applied in urban management and assessment of human settlement-related sustainable development goals over large areas." @default.
- W2918958705 created "2019-03-11" @default.
- W2918958705 creator A5019685128 @default.
- W2918958705 creator A5027317685 @default.
- W2918958705 creator A5038754344 @default.
- W2918958705 creator A5046153352 @default.
- W2918958705 creator A5064890446 @default.
- W2918958705 creator A5068257352 @default.
- W2918958705 date "2019-03-07" @default.
- W2918958705 modified "2023-09-29" @default.
- W2918958705 title "Semantic Segmentation of Building Roof in Dense Urban Environment with Deep Convolutional Neural Network: A Case Study Using GF2 VHR Imagery in China" @default.
- W2918958705 cites W1966411833 @default.
- W2918958705 cites W2008432813 @default.
- W2918958705 cites W2054091530 @default.
- W2918958705 cites W2055702796 @default.
- W2918958705 cites W2061421991 @default.
- W2918958705 cites W2114828048 @default.
- W2918958705 cites W2157284958 @default.
- W2918958705 cites W2164976328 @default.
- W2918958705 cites W2308318555 @default.
- W2918958705 cites W2503140068 @default.
- W2918958705 cites W2526250128 @default.
- W2918958705 cites W2529139408 @default.
- W2918958705 cites W2538244214 @default.
- W2918958705 cites W2552440277 @default.
- W2918958705 cites W2620689612 @default.
- W2918958705 cites W2623490820 @default.
- W2918958705 cites W2743664091 @default.
- W2918958705 cites W2755226765 @default.
- W2918958705 cites W2766666090 @default.
- W2918958705 cites W2790493222 @default.
- W2918958705 cites W2919115771 @default.
- W2918958705 cites W639708223 @default.
- W2918958705 doi "https://doi.org/10.3390/s19051164" @default.
- W2918958705 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6427113" @default.
- W2918958705 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30866539" @default.
- W2918958705 hasPublicationYear "2019" @default.
- W2918958705 type Work @default.
- W2918958705 sameAs 2918958705 @default.
- W2918958705 citedByCount "20" @default.
- W2918958705 countsByYear W29189587052020 @default.
- W2918958705 countsByYear W29189587052021 @default.
- W2918958705 countsByYear W29189587052022 @default.
- W2918958705 countsByYear W29189587052023 @default.
- W2918958705 crossrefType "journal-article" @default.
- W2918958705 hasAuthorship W2918958705A5019685128 @default.
- W2918958705 hasAuthorship W2918958705A5027317685 @default.
- W2918958705 hasAuthorship W2918958705A5038754344 @default.
- W2918958705 hasAuthorship W2918958705A5046153352 @default.
- W2918958705 hasAuthorship W2918958705A5064890446 @default.
- W2918958705 hasAuthorship W2918958705A5068257352 @default.
- W2918958705 hasBestOaLocation W29189587051 @default.
- W2918958705 hasConcept C108583219 @default.
- W2918958705 hasConcept C124504099 @default.
- W2918958705 hasConcept C127313418 @default.
- W2918958705 hasConcept C127413603 @default.
- W2918958705 hasConcept C147176958 @default.
- W2918958705 hasConcept C153180895 @default.
- W2918958705 hasConcept C154945302 @default.
- W2918958705 hasConcept C199360897 @default.
- W2918958705 hasConcept C2776748203 @default.
- W2918958705 hasConcept C41008148 @default.
- W2918958705 hasConcept C43521106 @default.
- W2918958705 hasConcept C62649853 @default.
- W2918958705 hasConcept C81363708 @default.
- W2918958705 hasConcept C89600930 @default.
- W2918958705 hasConceptScore W2918958705C108583219 @default.
- W2918958705 hasConceptScore W2918958705C124504099 @default.
- W2918958705 hasConceptScore W2918958705C127313418 @default.
- W2918958705 hasConceptScore W2918958705C127413603 @default.
- W2918958705 hasConceptScore W2918958705C147176958 @default.
- W2918958705 hasConceptScore W2918958705C153180895 @default.
- W2918958705 hasConceptScore W2918958705C154945302 @default.
- W2918958705 hasConceptScore W2918958705C199360897 @default.
- W2918958705 hasConceptScore W2918958705C2776748203 @default.
- W2918958705 hasConceptScore W2918958705C41008148 @default.
- W2918958705 hasConceptScore W2918958705C43521106 @default.
- W2918958705 hasConceptScore W2918958705C62649853 @default.
- W2918958705 hasConceptScore W2918958705C81363708 @default.
- W2918958705 hasConceptScore W2918958705C89600930 @default.
- W2918958705 hasFunder F4320321530 @default.
- W2918958705 hasIssue "5" @default.
- W2918958705 hasLocation W29189587051 @default.
- W2918958705 hasLocation W29189587052 @default.
- W2918958705 hasLocation W29189587053 @default.
- W2918958705 hasLocation W29189587054 @default.
- W2918958705 hasLocation W29189587055 @default.
- W2918958705 hasLocation W29189587056 @default.
- W2918958705 hasOpenAccess W2918958705 @default.
- W2918958705 hasPrimaryLocation W29189587051 @default.
- W2918958705 hasRelatedWork W2731899572 @default.
- W2918958705 hasRelatedWork W2790662084 @default.
- W2918958705 hasRelatedWork W2960184797 @default.
- W2918958705 hasRelatedWork W2999805992 @default.
- W2918958705 hasRelatedWork W3116150086 @default.
- W2918958705 hasRelatedWork W3133861977 @default.
- W2918958705 hasRelatedWork W4200173597 @default.
- W2918958705 hasRelatedWork W4285827401 @default.