Matches in SemOpenAlex for { <https://semopenalex.org/work/W2918964978> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2918964978 abstract "We study a quantum mechanical $sigma$-model whose target space is a hyperKahler cone. As shown by Singleton, [184], such a theory has superconformal invariance under the algebra $mathfrak{osp}(4^*|4)$. One can formally define a superconformal index that counts the short representations of the algebra. When the hyperKahler cone has a projective symplectic resolution, we define a regularised superconformal index. The index is defined as the equivariant Hirzebruch index of the Dolbeault cohomology of the resolution, hereafter referred to as the index. In many cases, the index can be explicitly calculated via localisation theorems. By limiting to zero the fugacities in the index corresponding to an isometry, one forms the index of the submanifold of the target space invariant under that isometry. There is a limit of the fugacities that gives the Hilbert series of the target space, and often there is another limit of the parameters that produces the Poincare polynomial for $mathbb C^times$-equivariant Borel-Moore homology of the space.A natural class of hyperKahler cones are Nakajima quiver varieties. We compute the index of the $A$-type quiver varieties by making use of the fact that they are submanifolds of instanton moduli space invariant under an isometry.Every Nakajima quiver variety arises as the Higgs branch of a three dimensional $mathcal N =4$ quiver gauge theory, or equivalently the Coulomb branch of the mirror dual theory. We show the equivalence between the descriptions of the Hilbert series of a line bundle on the ADHM quiver variety via localisation, and via Hanany’s monopole formula.Finally, we study the action of the Poisson algebra of the coordinate ring on the Hilbert series of line bundles. We restrict to the case of looking at the Coulomb branch of balanced $ADE$-type quivers in a certain infinite rank limit. In this limit, the Poisson algebra is a semiclassical limit of the Yangian of $ADE$-type. The space of global sections of the line bundle is a graded representation of the Poisson algebra. We find that, as a representation, it is a tensor product of the space of holomorphic functions with a finite dimensional representation. This finite dimensional representation is a tensor product of two irreducible representations of the Yangian, defined by the choice of line bundle. We find a striking duality between the characters of these finite dimensional representations and the generating function for Poincare polynomials." @default.
- W2918964978 created "2019-03-11" @default.
- W2918964978 creator A5070505122 @default.
- W2918964978 date "2019-03-01" @default.
- W2918964978 modified "2023-09-23" @default.
- W2918964978 title "Much ado about nothing : the superconformal index and Hilbert series of three dimensional N =4 vacua" @default.
- W2918964978 cites W1480611980 @default.
- W2918964978 cites W165688338 @default.
- W2918964978 cites W1966121613 @default.
- W2918964978 cites W1988397877 @default.
- W2918964978 cites W2092940386 @default.
- W2918964978 cites W2147383273 @default.
- W2918964978 cites W2232221069 @default.
- W2918964978 cites W2536892931 @default.
- W2918964978 cites W2997983412 @default.
- W2918964978 cites W3098613072 @default.
- W2918964978 cites W3099253381 @default.
- W2918964978 cites W3103824271 @default.
- W2918964978 doi "https://doi.org/10.17863/cam.35266" @default.
- W2918964978 hasPublicationYear "2019" @default.
- W2918964978 type Work @default.
- W2918964978 sameAs 2918964978 @default.
- W2918964978 citedByCount "2" @default.
- W2918964978 countsByYear W29189649782018 @default.
- W2918964978 countsByYear W29189649782021 @default.
- W2918964978 crossrefType "dissertation" @default.
- W2918964978 hasAuthorship W2918964978A5070505122 @default.
- W2918964978 hasConcept C168310172 @default.
- W2918964978 hasConcept C168619227 @default.
- W2918964978 hasConcept C171036898 @default.
- W2918964978 hasConcept C202444582 @default.
- W2918964978 hasConcept C33923547 @default.
- W2918964978 hasConcept C73373263 @default.
- W2918964978 hasConceptScore W2918964978C168310172 @default.
- W2918964978 hasConceptScore W2918964978C168619227 @default.
- W2918964978 hasConceptScore W2918964978C171036898 @default.
- W2918964978 hasConceptScore W2918964978C202444582 @default.
- W2918964978 hasConceptScore W2918964978C33923547 @default.
- W2918964978 hasConceptScore W2918964978C73373263 @default.
- W2918964978 hasLocation W29189649781 @default.
- W2918964978 hasOpenAccess W2918964978 @default.
- W2918964978 hasPrimaryLocation W29189649781 @default.
- W2918964978 hasRelatedWork W1505095862 @default.
- W2918964978 hasRelatedWork W1512523411 @default.
- W2918964978 hasRelatedWork W1524047195 @default.
- W2918964978 hasRelatedWork W1743223923 @default.
- W2918964978 hasRelatedWork W1972953270 @default.
- W2918964978 hasRelatedWork W1985350954 @default.
- W2918964978 hasRelatedWork W2040771931 @default.
- W2918964978 hasRelatedWork W2069298297 @default.
- W2918964978 hasRelatedWork W2094918627 @default.
- W2918964978 hasRelatedWork W2110243723 @default.
- W2918964978 hasRelatedWork W2163022470 @default.
- W2918964978 hasRelatedWork W2167885838 @default.
- W2918964978 hasRelatedWork W2429115183 @default.
- W2918964978 hasRelatedWork W2484572859 @default.
- W2918964978 hasRelatedWork W2887900455 @default.
- W2918964978 hasRelatedWork W2964142566 @default.
- W2918964978 hasRelatedWork W3015910719 @default.
- W2918964978 hasRelatedWork W3092337941 @default.
- W2918964978 hasRelatedWork W3098984024 @default.
- W2918964978 hasRelatedWork W3103280274 @default.
- W2918964978 isParatext "false" @default.
- W2918964978 isRetracted "false" @default.
- W2918964978 magId "2918964978" @default.
- W2918964978 workType "dissertation" @default.