Matches in SemOpenAlex for { <https://semopenalex.org/work/W2919009862> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2919009862 endingPage "1772" @default.
- W2919009862 startingPage "1763" @default.
- W2919009862 abstract "No AccessTechnical NotesNumerical Experiments on Anomalies from Stationary, Slowly Moving, and Fast-Moving ShocksKeiichi Kitamura and Eiji ShimaKeiichi KitamuraYokohama National University, Yokohama 240-8501, Japan*Associate Professor, School of Engineering, 79-5 Tokiwadai, Hodogaya-ku. Senior Member AIAA.Search for more papers by this author and Eiji ShimaJapan Aerospace Exploration Agency, Sagamihara, Kanagawa 252-5210, Japan†Research and Development Directorate, Research Unit III (JAXA’s Engineering Digital Innovation Center), 3-1-1 Yoshinodai, Chuo. Senior Member AIAA.Search for more papers by this authorPublished Online:4 Mar 2019https://doi.org/10.2514/1.J057366SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Quirk J. J., “A Contribution to the Great Riemann Solver Debate,” International Journal for Numerical Methods in Fluids, Vol. 18, No. 6, 1994, pp. 555–574. doi:https://doi.org/10.1002/(ISSN)1097-0363 IJNFDW 0271-2091 CrossrefGoogle Scholar[2] Pandolfi M. and D’Ambrosio D., “Numerical Instabilities in Upwind Methods: Analysis and Cures for the ‘Carbuncle’ Phenomenon,” Journal of Computational Physics, Vol. 166, No. 2, 2001, pp. 271–301. doi:https://doi.org/10.1006/jcph.2000.6652 JCTPAH 0021-9991 CrossrefGoogle Scholar[3] Kitamura K., Roe P. and Ismail F., “Evaluation of Euler Fluxes for Hypersonic Flow Computations,” AIAA Journal, Vol. 47, No. 1, 2009, pp. 44–53. doi:https://doi.org/10.2514/1.33735 AIAJAH 0001-1452 LinkGoogle Scholar[4] Zaide D. and Roe P. L., “Shock Capturing Anomalies and the Jump Conditions in One Dimension,” AIAA Paper 2011-3686, June 2011. LinkGoogle Scholar[5] Horvath T. J., “Experimental Aerothermodynamics in Support of the Columbia Accident Investigation,” 42nd AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2004-1387, Jan. 2004. LinkGoogle Scholar[6] Barth T. J., “Some Notes on Shock-Resolving Flux Functions, Part 1: Stationary Characteristics,” NASA TM-101087, 1989. Google Scholar[7] Chauvat Y., Moschetta J. M. and Gressier J., “Shock Wave Numerical Structure and the Carbuncle Phenomenon,” International Journal for Numerical Methods in Fluids, Vol. 47, Nos. 8–9, 2005, pp. 903–909. doi:https://doi.org/10.1002/(ISSN)1097-0363 IJNFDW 0271-2091 CrossrefGoogle Scholar[8] Roe P. L., “Fluctuations and Signals—A Framework for Numerical Evolution Problems,” Numerical Methods for Fluid Dynamics, edited by Morton K. W. and Baines M. J., Academic Press, New York, 1982, pp. 219–257. Google Scholar[9] Roberts T. W., “The Behavior of Flux Difference Splitting Schemes Near Slowly Moving Shock Waves,” Journal of Computational Physics, Vol. 90, No. 1, 1990, pp. 141–160. doi:https://doi.org/10.1016/0021-9991(90)90200-K JCTPAH 0021-9991 CrossrefGoogle Scholar[10] Jin S. and Liu J. G., “The Effects of Numerical Viscosities: 1. Slowly Moving Shocks,” Journal of Computational Physics, Vol. 126, No. 2, 1996, pp. 373–389. doi:https://doi.org/10.1006/jcph.1996.0144 JCTPAH 0021-9991 CrossrefGoogle Scholar[11] Karni S. and Canic S., “Computations of Slowly Moving Shocks,” Journal of Computational Physics, Vol. 136, No. 1, 1997, pp. 132–139. doi:https://doi.org/10.1006/jcph.1997.5751 JCTPAH 0021-9991 CrossrefGoogle Scholar[12] Arora M. and Roe P. L., “On Postshock Oscillations due to Shock Capturing Schemes in Unsteady Flows,” Journal of Computational Physics, Vol. 130, No. 1, 1997, pp. 25–40. doi:https://doi.org/10.1006/jcph.1996.5534 JCTPAH 0021-9991 CrossrefGoogle Scholar[13] Johnsen E., “Analysis of Numerical Errors Generated by Slowly Moving Shock Waves,” AIAA Journal, Vol. 51, No.5, 2013, pp. 1269–1274. doi:https://doi.org/10.2514/1.J051884 AIAJAH 0001-1452 LinkGoogle Scholar[14] Dumbser M., Moschetta J. M. and Gressier J., “A Matrix Stability Analysis of the Carbuncle Phenomenon,” Journal of Computational Physics, Vol. 197, No. 2, 2004, pp. 647–670. doi:https://doi.org/10.1016/j.jcp.2003.12.013 JCTPAH 0021-9991 CrossrefGoogle Scholar[15] Sanders R., Morano E. and Druguetz M. C., “Multidimensional Dissipation for Upwind Schemes: Stability and Applications to Gas Dynamics,” Journal of Computational Physics, Vol. 145, No. 2, 1998, pp. 511–537. doi:https://doi.org/10.1006/jcph.1998.6047 JCTPAH 0021-9991 CrossrefGoogle Scholar[16] Kitamura K., Shima E., Nakamura Y. and Roe P., “Evaluation of Euler Fluxes for Hypersonic Heating Computations,” AIAA Journal, Vol. 48, No. 4, 2010, pp. 763–776. doi:https://doi.org/10.2514/1.41605 AIAJAH 0001-1452 LinkGoogle Scholar[17] van Leer B., “Flux Vector Splitting for the Euler Equations,” Eighth International Conference of Numerical Methods in Fluid Dynamics, Vol. 170, Lecture Notes in Physics, Springer, Berlin, 1982, pp. 507–512. CrossrefGoogle Scholar[18] Roe P. L., “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” Journal of Computational Physics, Vol. 43, No. 2, 1981, pp. 357–372. doi:https://doi.org/10.1016/0021-9991(81)90128-5 JCTPAH 0021-9991 CrossrefGoogle Scholar[19] Liou M. S., “A Sequel to AUSM, Part II: AUSM+-up for All Speeds,” Journal of Computational Physics, Vol. 214, No. 1, 2006, pp. 137–170. doi:https://doi.org/10.1016/j.jcp.2005.09.020 JCTPAH 0021-9991 CrossrefGoogle Scholar[20] Shima E. and Kitamura K., “Parameter-Free Simple Low-Dissipation AUSM-Family Scheme for All Speeds,” AIAA Journal, Vol. 49, No. 8, 2011, pp. 1693–1709. doi:https://doi.org/10.2514/1.J050905 AIAJAH 0001-1452 LinkGoogle Scholar[21] Kitamura K., “Assessment of SLAU2 and Other Flux Functions with Slope Limiters in Hypersonic Shock-Interaction Heating,” Computers & Fluids, Vol. 129, April 2016, pp. 134–145. doi:https://doi.org/10.1016/j.compfluid.2016.02.006 CrossrefGoogle Scholar[22] Harten A., “High Resolution Schemes for Hyperbolic Conservation Laws,” Journal of Computational Physics, Vol. 49, No. 3, 1983, pp. 357–393. doi:https://doi.org/10.1016/0021-9991(83)90136-5 JCTPAH 0021-9991 CrossrefGoogle Scholar[23] Godunov S. K., “A Finite Difference Method for the Numerical Computation of Discontinuous Solutions of the Equations of Fluid Dynamics,” Matematicheskii Sbornik/Izdavaemyi Moskovskim Matematicheskim Obshchestvom, Vol. 47, No. 3, 1959, pp. 271–306. Google Scholar[24] Toro E. F., Spruce M. and Speares W., “Restoration of the Contact Surface in the HLL Riemann Solver,” Shock Waves, Vol. 4, No. 1, 1994, pp. 25–34. doi:https://doi.org/10.1007/BF01414629 SHWAEN 0938-1287 CrossrefGoogle Scholar[25] Hänel D., Schwane R. and Seider G., “On the Accuracy of Upwind Schemes for the Solution of the Navier-Stokes Equations,” AIAA Paper 1987-1105, June 1987. LinkGoogle Scholar[26] Einfeldt B., “On Godunov-Type Methods for Gas Dynamics,” SIAM Journal on Numerical Analysis, Vol. 25, No. 2, 1998, pp. 294–318. doi:https://doi.org/10.1137/0725021 SJNAEQ 0036-1429 CrossrefGoogle Scholar[27] Kitamura K. and Shima E., “Towards Shock-Stable and Accurate Hypersonic Heating Computations: A New Pressure Flux for AUSM-Family Schemes,” Journal of Computational Physics, Vol. 245, July 2013, pp. 62–83. doi:https://doi.org/10.1016/j.jcp.2013.02.046 JCTPAH 0021-9991 CrossrefGoogle Scholar[28] Liou M.-S., “A Sequel to AUSM: AUSM+,” Journal of Computational Physics, Vol. 129, No. 2, 1996, pp. 364–382. doi:https://doi.org/10.1006/jcph.1996.0256 JCTPAH 0021-9991 CrossrefGoogle Scholar[29] Edwards J. R., “Towards Unified CFD Simulation of Real Fluid Flows,” AIAA Paper 2001-2524, June 2001. LinkGoogle Scholar[30] Kim K. H., Kim C. and Rho O. H., “Methods for the Accurate Computations of Hypersonic Flows: I. AUSMPW+ Scheme,” Journal of Computational Physics, Vol. 174, No. 1, 2001, pp. 38–80. doi:https://doi.org/10.1006/jcph.2001.6873 JCTPAH 0021-9991 CrossrefGoogle Scholar[31] Kim S., Rho O.-H. and Hong S. K., “Cures for the Shock Instability: Development of a Shock-Stable Roe Scheme,” Journal of Computational Physics, Vol. 185, No. 2, 2003, pp. 342–374. doi:https://doi.org/10.1016/S0021-9991(02)00037-2 JCTPAH 0021-9991 CrossrefGoogle Scholar[32] Men’shov I. S. and Nakamura Y., “Numerical Simulations and Experimental Comparisons for High-Speed Nonequilibrium Air Flows,” Fluid Dynamics Research, Vol. 27, No. 5, 2000, pp. 305–334. doi:https://doi.org/10.1016/S0169-5983(00)00010-1 FDRSEH 0169-5983 CrossrefGoogle Scholar[33] Anderson J. D., Modern Compressible Flow with Historical Perspective, 3rd ed., McGraw–Hill, New York, 2003, p. 90. Google Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byOn Peculiar Behaviors of Captured Very-Weak Moving ShockwavesGaku Fukushima, Keiichi Kitamura and Akihiro Sasoh20 June 2022A Review of Riemann Solvers for Hypersonic Flows21 October 2021 | Archives of Computational Methods in Engineering, Vol. 29, No. 3Space-time mesh refinement method for simulating transient mixed flows11 January 2021 | Journal of Hydraulic Research, Vol. 59, No. 5Suppress Numerical Oscillations in Transient Mixed Flow Simulations with a Modified HLL Solver27 April 2020 | Water, Vol. 12, No. 5Role and History of Numerical Flux Functions1 November 2020 What's Popular Volume 57, Number 4April 2019 CrossmarkInformationCopyright © 2019 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamicsAeronautical EngineeringAeronauticsComputational Fluid DynamicsEquations of Fluid DynamicsFinite Volume MethodFlow RegimesFluid DynamicsNormal Shock WaveNumerical AnalysisShock Waves KeywordsHugoniot CurveBlunt BodiesRankine Hugoniot RelationCourant Friedrichs LewyFVMSpecific HeatHigh Aspect RatioHypersonic FlowsTotal EnergyNormal Shock WaveAcknowledgmentsThis work was partially conducted while Keiichi Kitamura was under supervision of Eiji Shima at the Japan Aerospace Exploration Agency, supported by the Japan Society for the Promotion of Science. Tsutomu Saito, Muroran Institute of Technology, Japan, gave the authors a helpful comment. The authors thank their cooperation.PDF Received1 April 2018Accepted17 January 2019Published online4 March 2019" @default.
- W2919009862 created "2019-03-11" @default.
- W2919009862 creator A5005957730 @default.
- W2919009862 creator A5071127522 @default.
- W2919009862 date "2019-04-01" @default.
- W2919009862 modified "2023-10-16" @default.
- W2919009862 title "Numerical Experiments on Anomalies from Stationary, Slowly Moving, and Fast-Moving Shocks" @default.
- W2919009862 cites W1638842695 @default.
- W2919009862 cites W1639469298 @default.
- W2919009862 cites W1964800112 @default.
- W2919009862 cites W1969760987 @default.
- W2919009862 cites W1970617977 @default.
- W2919009862 cites W1990945307 @default.
- W2919009862 cites W1997174269 @default.
- W2919009862 cites W1998830482 @default.
- W2919009862 cites W2000596011 @default.
- W2919009862 cites W2005106153 @default.
- W2919009862 cites W2010173430 @default.
- W2919009862 cites W2012245876 @default.
- W2919009862 cites W2020841229 @default.
- W2919009862 cites W2060054830 @default.
- W2919009862 cites W2070912498 @default.
- W2919009862 cites W2071850018 @default.
- W2919009862 cites W2074500026 @default.
- W2919009862 cites W2084423291 @default.
- W2919009862 cites W2090638504 @default.
- W2919009862 cites W2093580380 @default.
- W2919009862 cites W2104581956 @default.
- W2919009862 cites W2119854869 @default.
- W2919009862 cites W2131266849 @default.
- W2919009862 cites W2162357087 @default.
- W2919009862 cites W2171431553 @default.
- W2919009862 cites W2284281614 @default.
- W2919009862 cites W2318770386 @default.
- W2919009862 cites W2997956378 @default.
- W2919009862 cites W4245037559 @default.
- W2919009862 doi "https://doi.org/10.2514/1.j057366" @default.
- W2919009862 hasPublicationYear "2019" @default.
- W2919009862 type Work @default.
- W2919009862 sameAs 2919009862 @default.
- W2919009862 citedByCount "8" @default.
- W2919009862 countsByYear W29190098622020 @default.
- W2919009862 countsByYear W29190098622021 @default.
- W2919009862 countsByYear W29190098622022 @default.
- W2919009862 countsByYear W29190098622023 @default.
- W2919009862 crossrefType "journal-article" @default.
- W2919009862 hasAuthorship W2919009862A5005957730 @default.
- W2919009862 hasAuthorship W2919009862A5071127522 @default.
- W2919009862 hasBestOaLocation W29190098622 @default.
- W2919009862 hasConcept C121332964 @default.
- W2919009862 hasConcept C127313418 @default.
- W2919009862 hasConcept C57879066 @default.
- W2919009862 hasConcept C74650414 @default.
- W2919009862 hasConceptScore W2919009862C121332964 @default.
- W2919009862 hasConceptScore W2919009862C127313418 @default.
- W2919009862 hasConceptScore W2919009862C57879066 @default.
- W2919009862 hasConceptScore W2919009862C74650414 @default.
- W2919009862 hasIssue "4" @default.
- W2919009862 hasLocation W29190098621 @default.
- W2919009862 hasLocation W29190098622 @default.
- W2919009862 hasOpenAccess W2919009862 @default.
- W2919009862 hasPrimaryLocation W29190098621 @default.
- W2919009862 hasRelatedWork W2271181815 @default.
- W2919009862 hasRelatedWork W2902782467 @default.
- W2919009862 hasRelatedWork W2935759653 @default.
- W2919009862 hasRelatedWork W3105167352 @default.
- W2919009862 hasRelatedWork W3148032049 @default.
- W2919009862 hasRelatedWork W54078636 @default.
- W2919009862 hasRelatedWork W1501425562 @default.
- W2919009862 hasRelatedWork W2298861036 @default.
- W2919009862 hasRelatedWork W2954470139 @default.
- W2919009862 hasRelatedWork W3084825885 @default.
- W2919009862 hasVolume "57" @default.
- W2919009862 isParatext "false" @default.
- W2919009862 isRetracted "false" @default.
- W2919009862 magId "2919009862" @default.
- W2919009862 workType "article" @default.