Matches in SemOpenAlex for { <https://semopenalex.org/work/W2919154325> ?p ?o ?g. }
- W2919154325 abstract "The triumphant utilization of data mining in extremely evident areas like trade, commerce, and e-business has directed to its application in another industry. The medical conditions are still knowledge rich but information low. There is an abundance of information feasible inside the medical practices. Still, there is a shortage of essential investigation mechanisms to recognize hidden trends and relationships in data. Many researchers have applied Data Mining methods for the prognosis and diagnosis of several diseases. Machine Learning methods have broadly utilized in the prognostication of different diseases at the beginning stages. The current decade has observed an abnormal development in the variety and volume of electronic data associated with the development and research, patient self-tracking, and health records together suggested to as Big Data. This paper presents a comprehensive literature survey on the importance of Feature Selection methods, Supervised Machine Learning methods, Unsupervised Machine Learning methods and big data for the healthcare industry." @default.
- W2919154325 created "2019-03-11" @default.
- W2919154325 creator A5007242218 @default.
- W2919154325 creator A5011930756 @default.
- W2919154325 date "2018-08-01" @default.
- W2919154325 modified "2023-10-18" @default.
- W2919154325 title "Application Of Machine Learning Techniques, Big Data Analytics In Health Care Sector – A Literature Survey" @default.
- W2919154325 cites W2234741790 @default.
- W2919154325 cites W2285118877 @default.
- W2919154325 cites W229682254 @default.
- W2919154325 cites W2306105455 @default.
- W2919154325 cites W2345503783 @default.
- W2919154325 cites W2486983281 @default.
- W2919154325 cites W2493590692 @default.
- W2919154325 cites W2510113590 @default.
- W2919154325 cites W2520303620 @default.
- W2919154325 cites W2532144455 @default.
- W2919154325 cites W2549442933 @default.
- W2919154325 cites W2550329658 @default.
- W2919154325 cites W2555534312 @default.
- W2919154325 cites W2563832757 @default.
- W2919154325 cites W2569214105 @default.
- W2919154325 cites W2573242108 @default.
- W2919154325 cites W2576787043 @default.
- W2919154325 cites W2580495024 @default.
- W2919154325 cites W2593193389 @default.
- W2919154325 cites W2595169730 @default.
- W2919154325 cites W2595543006 @default.
- W2919154325 cites W2596647822 @default.
- W2919154325 cites W2606568264 @default.
- W2919154325 cites W2612452923 @default.
- W2919154325 cites W2622382573 @default.
- W2919154325 cites W2732956193 @default.
- W2919154325 cites W2734832579 @default.
- W2919154325 cites W2735520148 @default.
- W2919154325 cites W2737777098 @default.
- W2919154325 cites W2738746916 @default.
- W2919154325 cites W2750737953 @default.
- W2919154325 cites W2754840697 @default.
- W2919154325 cites W2755582817 @default.
- W2919154325 cites W2755761608 @default.
- W2919154325 cites W2762836337 @default.
- W2919154325 cites W2764216414 @default.
- W2919154325 cites W2767066031 @default.
- W2919154325 cites W2768045609 @default.
- W2919154325 cites W2768799535 @default.
- W2919154325 cites W2770202056 @default.
- W2919154325 cites W2770260636 @default.
- W2919154325 cites W2773496623 @default.
- W2919154325 cites W2776897388 @default.
- W2919154325 cites W2784912488 @default.
- W2919154325 cites W2788276467 @default.
- W2919154325 cites W2792754776 @default.
- W2919154325 cites W2795101923 @default.
- W2919154325 cites W2796586146 @default.
- W2919154325 cites W2796641369 @default.
- W2919154325 cites W2797345284 @default.
- W2919154325 cites W2797612459 @default.
- W2919154325 cites W2799824791 @default.
- W2919154325 cites W2802789271 @default.
- W2919154325 cites W2805037191 @default.
- W2919154325 cites W2806755843 @default.
- W2919154325 cites W2806862499 @default.
- W2919154325 cites W2810538419 @default.
- W2919154325 cites W2810792259 @default.
- W2919154325 cites W2811160324 @default.
- W2919154325 cites W2964081295 @default.
- W2919154325 doi "https://doi.org/10.1109/i-smac.2018.8653654" @default.
- W2919154325 hasPublicationYear "2018" @default.
- W2919154325 type Work @default.
- W2919154325 sameAs 2919154325 @default.
- W2919154325 citedByCount "9" @default.
- W2919154325 countsByYear W29191543252020 @default.
- W2919154325 countsByYear W29191543252021 @default.
- W2919154325 countsByYear W29191543252022 @default.
- W2919154325 countsByYear W29191543252023 @default.
- W2919154325 crossrefType "proceedings-article" @default.
- W2919154325 hasAuthorship W2919154325A5007242218 @default.
- W2919154325 hasAuthorship W2919154325A5011930756 @default.
- W2919154325 hasConcept C119857082 @default.
- W2919154325 hasConcept C124101348 @default.
- W2919154325 hasConcept C136197465 @default.
- W2919154325 hasConcept C138885662 @default.
- W2919154325 hasConcept C148483581 @default.
- W2919154325 hasConcept C154945302 @default.
- W2919154325 hasConcept C160735492 @default.
- W2919154325 hasConcept C162324750 @default.
- W2919154325 hasConcept C194051981 @default.
- W2919154325 hasConcept C2522767166 @default.
- W2919154325 hasConcept C2778137410 @default.
- W2919154325 hasConcept C41008148 @default.
- W2919154325 hasConcept C41895202 @default.
- W2919154325 hasConcept C50522688 @default.
- W2919154325 hasConcept C56739046 @default.
- W2919154325 hasConcept C75684735 @default.
- W2919154325 hasConcept C79158427 @default.
- W2919154325 hasConcept C8038995 @default.
- W2919154325 hasConceptScore W2919154325C119857082 @default.
- W2919154325 hasConceptScore W2919154325C124101348 @default.
- W2919154325 hasConceptScore W2919154325C136197465 @default.