Matches in SemOpenAlex for { <https://semopenalex.org/work/W2919207633> ?p ?o ?g. }
- W2919207633 endingPage "747" @default.
- W2919207633 startingPage "739" @default.
- W2919207633 abstract "Clot characteristics can provide information on the cause of cerebral artery occlusion and may guide acute revascularization and secondary prevention strategies. We developed a rapid automated clot analysis system using machine learning (ML) and validated its accuracy in patients undergoing endovascular treatment.Pre-endovascular treatment gradient echo (GRE) images from consecutive patients with middle cerebral artery occlusion were utilized to develop and validate an ML system to predict whether atrial fibrillation (AF) was the underlying cause of ischemic stroke. The accuracy of the ML algorithm was compared with that of visual inspection by neuroimaging specialists for the presence of blooming artifact. Endovascular procedures and outcomes were compared in patients with and without AF.Of 67 patients, 29 (43.3%) had AF. Of these, 13 had known AF and 16 were newly diagnosed with cardiac monitoring. By visual inspection, interrater correlation for blooming artifact was 0.73 and sensitivity and specificity for AF were 0.79 and 0.63, respectively. For AF classification, the ML algorithms yielded an average accuracy of > 75.4% in fivefold cross-validation with clot signal profiles obtained from 52 patients and an area under the curve >0.87 for the average AF probability from five signal profiles in external validation (n = 15). Analysis with an in-house interface took approximately 3 min per patient. Absence of AF was associated with increased number of passes by stentriever, high reocclusion frequency, and additional use of rescue stenting and/or glycogen IIb/IIIa blocker for recanalization.ML-based rapid clot analysis is feasible and can identify AF with high accuracy, enabling selection of endovascular treatment strategy." @default.
- W2919207633 created "2019-03-11" @default.
- W2919207633 creator A5007805788 @default.
- W2919207633 creator A5012780384 @default.
- W2919207633 creator A5031399777 @default.
- W2919207633 creator A5031575222 @default.
- W2919207633 creator A5044271410 @default.
- W2919207633 creator A5053841007 @default.
- W2919207633 creator A5071917675 @default.
- W2919207633 creator A5078714365 @default.
- W2919207633 date "2019-03-04" @default.
- W2919207633 modified "2023-10-16" @default.
- W2919207633 title "Characterization of clot composition in acute cerebral infarct using machine learning techniques" @default.
- W2919207633 cites W1967702269 @default.
- W2919207633 cites W2005144667 @default.
- W2919207633 cites W2023766772 @default.
- W2919207633 cites W2051237519 @default.
- W2919207633 cites W2084411835 @default.
- W2919207633 cites W2101800317 @default.
- W2919207633 cites W2106000052 @default.
- W2919207633 cites W2117130359 @default.
- W2919207633 cites W2122178189 @default.
- W2919207633 cites W2155897123 @default.
- W2919207633 cites W2171165037 @default.
- W2919207633 cites W2229480159 @default.
- W2919207633 cites W2289861943 @default.
- W2919207633 cites W2341509179 @default.
- W2919207633 cites W2369651267 @default.
- W2919207633 cites W2410517029 @default.
- W2919207633 cites W2520316446 @default.
- W2919207633 cites W2520431088 @default.
- W2919207633 cites W2533998335 @default.
- W2919207633 cites W2539028471 @default.
- W2919207633 cites W2552909639 @default.
- W2919207633 cites W2558092854 @default.
- W2919207633 cites W2563197580 @default.
- W2919207633 cites W2585074582 @default.
- W2919207633 cites W2592929672 @default.
- W2919207633 cites W2606076692 @default.
- W2919207633 cites W2619033952 @default.
- W2919207633 cites W2621140147 @default.
- W2919207633 cites W2625088739 @default.
- W2919207633 cites W2626711511 @default.
- W2919207633 cites W2736038609 @default.
- W2919207633 cites W2759511880 @default.
- W2919207633 cites W2777652322 @default.
- W2919207633 cites W2785545596 @default.
- W2919207633 cites W2792781161 @default.
- W2919207633 cites W2793736549 @default.
- W2919207633 cites W2795142235 @default.
- W2919207633 cites W2795488727 @default.
- W2919207633 cites W2800452457 @default.
- W2919207633 cites W2884937458 @default.
- W2919207633 cites W2891010780 @default.
- W2919207633 cites W2893462288 @default.
- W2919207633 cites W2899740939 @default.
- W2919207633 cites W2902558766 @default.
- W2919207633 cites W3014784086 @default.
- W2919207633 cites W4255683973 @default.
- W2919207633 doi "https://doi.org/10.1002/acn3.751" @default.
- W2919207633 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6469248" @default.
- W2919207633 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31019998" @default.
- W2919207633 hasPublicationYear "2019" @default.
- W2919207633 type Work @default.
- W2919207633 sameAs 2919207633 @default.
- W2919207633 citedByCount "14" @default.
- W2919207633 countsByYear W29192076332020 @default.
- W2919207633 countsByYear W29192076332021 @default.
- W2919207633 countsByYear W29192076332022 @default.
- W2919207633 countsByYear W29192076332023 @default.
- W2919207633 crossrefType "journal-article" @default.
- W2919207633 hasAuthorship W2919207633A5007805788 @default.
- W2919207633 hasAuthorship W2919207633A5012780384 @default.
- W2919207633 hasAuthorship W2919207633A5031399777 @default.
- W2919207633 hasAuthorship W2919207633A5031575222 @default.
- W2919207633 hasAuthorship W2919207633A5044271410 @default.
- W2919207633 hasAuthorship W2919207633A5053841007 @default.
- W2919207633 hasAuthorship W2919207633A5071917675 @default.
- W2919207633 hasAuthorship W2919207633A5078714365 @default.
- W2919207633 hasBestOaLocation W29192076331 @default.
- W2919207633 hasConcept C126322002 @default.
- W2919207633 hasConcept C127413603 @default.
- W2919207633 hasConcept C154945302 @default.
- W2919207633 hasConcept C164705383 @default.
- W2919207633 hasConcept C2775841333 @default.
- W2919207633 hasConcept C2776268601 @default.
- W2919207633 hasConcept C2779010991 @default.
- W2919207633 hasConcept C2779161974 @default.
- W2919207633 hasConcept C2779464278 @default.
- W2919207633 hasConcept C2780645631 @default.
- W2919207633 hasConcept C41008148 @default.
- W2919207633 hasConcept C500558357 @default.
- W2919207633 hasConcept C541997718 @default.
- W2919207633 hasConcept C71924100 @default.
- W2919207633 hasConcept C78519656 @default.
- W2919207633 hasConceptScore W2919207633C126322002 @default.
- W2919207633 hasConceptScore W2919207633C127413603 @default.
- W2919207633 hasConceptScore W2919207633C154945302 @default.