Matches in SemOpenAlex for { <https://semopenalex.org/work/W2919256513> ?p ?o ?g. }
- W2919256513 abstract "The opioid epidemic in the United States is averaging over 100 deaths per day due to overdose. The effectiveness of opioids as pain treatments, and the drug-seeking behavior of opioid addicts, leads physicians in the United States to issue over 200 million opioid prescriptions every year. To better understand the biomedical profile of opioid-dependent patients, we analyzed information from electronic health records (EHR) including lab tests, vital signs, medical procedures, prescriptions, and other data from millions of patients to predict opioid substance dependence.We trained a machine learning model to classify patients by likelihood of having a diagnosis of substance dependence using EHR data from patients diagnosed with substance dependence, along with control patients with no history of substance-related conditions, matched by age, gender, and status of HIV, hepatitis C, and sickle cell disease. The top machine learning classifier using all features achieved a mean area under the receiver operating characteristic (AUROC) curve of ~ 92%, and analysis of the model uncovered associations between basic clinical factors and substance dependence. Additionally, diagnoses, prescriptions, and procedures prior to the diagnoses of substance dependence were analyzed to elucidate the clinical profile of substance-dependent patients, relative to controls.The predictive model may hold utility for identifying patients at risk of developing dependence, risk of overdose, and opioid-seeking patients that report other symptoms in their visits to the emergency room." @default.
- W2919256513 created "2019-03-11" @default.
- W2919256513 creator A5009085275 @default.
- W2919256513 creator A5012155836 @default.
- W2919256513 creator A5025359044 @default.
- W2919256513 creator A5032951414 @default.
- W2919256513 date "2019-01-29" @default.
- W2919256513 modified "2023-10-16" @default.
- W2919256513 title "Predicting opioid dependence from electronic health records with machine learning" @default.
- W2919256513 cites W159577011 @default.
- W2919256513 cites W162847486 @default.
- W2919256513 cites W1802066206 @default.
- W2919256513 cites W1976119118 @default.
- W2919256513 cites W1995681083 @default.
- W2919256513 cites W2008799821 @default.
- W2919256513 cites W2008998978 @default.
- W2919256513 cites W2012149849 @default.
- W2919256513 cites W2024589746 @default.
- W2919256513 cites W2052941302 @default.
- W2919256513 cites W2089985102 @default.
- W2919256513 cites W2094791001 @default.
- W2919256513 cites W2101368910 @default.
- W2919256513 cites W2112057564 @default.
- W2919256513 cites W2140302476 @default.
- W2919256513 cites W2143470297 @default.
- W2919256513 cites W2145314547 @default.
- W2919256513 cites W2154137734 @default.
- W2919256513 cites W2157825442 @default.
- W2919256513 cites W2298530262 @default.
- W2919256513 cites W2318964731 @default.
- W2919256513 cites W2404901863 @default.
- W2919256513 cites W2481271618 @default.
- W2919256513 cites W2519105412 @default.
- W2919256513 cites W2561135550 @default.
- W2919256513 cites W2595929216 @default.
- W2919256513 cites W27281885 @default.
- W2919256513 cites W2765203617 @default.
- W2919256513 cites W3098949126 @default.
- W2919256513 doi "https://doi.org/10.1186/s13040-019-0193-0" @default.
- W2919256513 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6352440" @default.
- W2919256513 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30728857" @default.
- W2919256513 hasPublicationYear "2019" @default.
- W2919256513 type Work @default.
- W2919256513 sameAs 2919256513 @default.
- W2919256513 citedByCount "62" @default.
- W2919256513 countsByYear W29192565132019 @default.
- W2919256513 countsByYear W29192565132020 @default.
- W2919256513 countsByYear W29192565132021 @default.
- W2919256513 countsByYear W29192565132022 @default.
- W2919256513 countsByYear W29192565132023 @default.
- W2919256513 crossrefType "journal-article" @default.
- W2919256513 hasAuthorship W2919256513A5009085275 @default.
- W2919256513 hasAuthorship W2919256513A5012155836 @default.
- W2919256513 hasAuthorship W2919256513A5025359044 @default.
- W2919256513 hasAuthorship W2919256513A5032951414 @default.
- W2919256513 hasBestOaLocation W29192565131 @default.
- W2919256513 hasConcept C118552586 @default.
- W2919256513 hasConcept C126322002 @default.
- W2919256513 hasConcept C142724271 @default.
- W2919256513 hasConcept C160735492 @default.
- W2919256513 hasConcept C162324750 @default.
- W2919256513 hasConcept C170493617 @default.
- W2919256513 hasConcept C194828623 @default.
- W2919256513 hasConcept C195910791 @default.
- W2919256513 hasConcept C2426938 @default.
- W2919256513 hasConcept C2776315796 @default.
- W2919256513 hasConcept C2778858636 @default.
- W2919256513 hasConcept C2780724011 @default.
- W2919256513 hasConcept C2781063702 @default.
- W2919256513 hasConcept C2908647359 @default.
- W2919256513 hasConcept C3017944768 @default.
- W2919256513 hasConcept C3019952477 @default.
- W2919256513 hasConcept C40010229 @default.
- W2919256513 hasConcept C45827449 @default.
- W2919256513 hasConcept C48856860 @default.
- W2919256513 hasConcept C50522688 @default.
- W2919256513 hasConcept C534262118 @default.
- W2919256513 hasConcept C58471807 @default.
- W2919256513 hasConcept C71924100 @default.
- W2919256513 hasConcept C98274493 @default.
- W2919256513 hasConcept C99454951 @default.
- W2919256513 hasConceptScore W2919256513C118552586 @default.
- W2919256513 hasConceptScore W2919256513C126322002 @default.
- W2919256513 hasConceptScore W2919256513C142724271 @default.
- W2919256513 hasConceptScore W2919256513C160735492 @default.
- W2919256513 hasConceptScore W2919256513C162324750 @default.
- W2919256513 hasConceptScore W2919256513C170493617 @default.
- W2919256513 hasConceptScore W2919256513C194828623 @default.
- W2919256513 hasConceptScore W2919256513C195910791 @default.
- W2919256513 hasConceptScore W2919256513C2426938 @default.
- W2919256513 hasConceptScore W2919256513C2776315796 @default.
- W2919256513 hasConceptScore W2919256513C2778858636 @default.
- W2919256513 hasConceptScore W2919256513C2780724011 @default.
- W2919256513 hasConceptScore W2919256513C2781063702 @default.
- W2919256513 hasConceptScore W2919256513C2908647359 @default.
- W2919256513 hasConceptScore W2919256513C3017944768 @default.
- W2919256513 hasConceptScore W2919256513C3019952477 @default.
- W2919256513 hasConceptScore W2919256513C40010229 @default.
- W2919256513 hasConceptScore W2919256513C45827449 @default.
- W2919256513 hasConceptScore W2919256513C48856860 @default.