Matches in SemOpenAlex for { <https://semopenalex.org/work/W2919291228> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2919291228 abstract "It is known that the ability of humans to perform basic-level visual classification (e.g. birds versus dogs) develops well before their ability to perform fine-grained visual categorization (e.g. distinguish different sub-categories from Hooded Oriole to Scott Oriole). Similarly, computer vision research follows such trajectory. Basic-level image classification has made great progress with the help of deep learning models in recent years, while fine-grained image categorization is still facing a number of challenges and attracting more and more attention. In this paper, we review the recent progress in fine-grained image categorization. Starting from its definition, we give a brief introduction to some recent developments in fine-grained image categorization. After that, we elaborate different algorithms from strongly supervised learning and weakly supervised learning, and compare their performances on four publicly available benchmarks. Finally, we provide a brief summary of these methods as well as the potential future research directions, i.e. suggest to explore deeper neural networks and generative adversarial networks." @default.
- W2919291228 created "2019-03-11" @default.
- W2919291228 creator A5002866587 @default.
- W2919291228 creator A5010536380 @default.
- W2919291228 creator A5018191388 @default.
- W2919291228 creator A5035711905 @default.
- W2919291228 creator A5040765066 @default.
- W2919291228 creator A5046004219 @default.
- W2919291228 creator A5090139914 @default.
- W2919291228 date "2018-08-01" @default.
- W2919291228 modified "2023-09-27" @default.
- W2919291228 title "A Survey of Fine-Grained Image Categorization" @default.
- W2919291228 cites W1496650988 @default.
- W2919291228 cites W1616462885 @default.
- W2919291228 cites W1686810756 @default.
- W2919291228 cites W1898560071 @default.
- W2919291228 cites W1928906481 @default.
- W2919291228 cites W1988898685 @default.
- W2919291228 cites W1993309459 @default.
- W2919291228 cites W1994213117 @default.
- W2919291228 cites W1995543189 @default.
- W2919291228 cites W2010181071 @default.
- W2919291228 cites W2049750909 @default.
- W2919291228 cites W2088049833 @default.
- W2919291228 cites W2097033479 @default.
- W2919291228 cites W2097117768 @default.
- W2919291228 cites W2099471712 @default.
- W2919291228 cites W2102605133 @default.
- W2919291228 cites W2104657103 @default.
- W2919291228 cites W2110015572 @default.
- W2919291228 cites W2110765924 @default.
- W2919291228 cites W2119525058 @default.
- W2919291228 cites W2135706578 @default.
- W2919291228 cites W2138011018 @default.
- W2919291228 cites W2163605009 @default.
- W2919291228 cites W2169501191 @default.
- W2919291228 cites W2194775991 @default.
- W2919291228 cites W2211589372 @default.
- W2919291228 cites W2289708887 @default.
- W2919291228 cites W2328317224 @default.
- W2919291228 cites W2403585668 @default.
- W2919291228 cites W2533598788 @default.
- W2919291228 cites W2549714022 @default.
- W2919291228 cites W2560552919 @default.
- W2919291228 cites W2765268259 @default.
- W2919291228 cites W56385144 @default.
- W2919291228 cites W14333344 @default.
- W2919291228 doi "https://doi.org/10.1109/icsp.2018.8652307" @default.
- W2919291228 hasPublicationYear "2018" @default.
- W2919291228 type Work @default.
- W2919291228 sameAs 2919291228 @default.
- W2919291228 citedByCount "3" @default.
- W2919291228 countsByYear W29192912282021 @default.
- W2919291228 countsByYear W29192912282022 @default.
- W2919291228 crossrefType "proceedings-article" @default.
- W2919291228 hasAuthorship W2919291228A5002866587 @default.
- W2919291228 hasAuthorship W2919291228A5010536380 @default.
- W2919291228 hasAuthorship W2919291228A5018191388 @default.
- W2919291228 hasAuthorship W2919291228A5035711905 @default.
- W2919291228 hasAuthorship W2919291228A5040765066 @default.
- W2919291228 hasAuthorship W2919291228A5046004219 @default.
- W2919291228 hasAuthorship W2919291228A5090139914 @default.
- W2919291228 hasConcept C108583219 @default.
- W2919291228 hasConcept C115961682 @default.
- W2919291228 hasConcept C119857082 @default.
- W2919291228 hasConcept C154945302 @default.
- W2919291228 hasConcept C37736160 @default.
- W2919291228 hasConcept C39890363 @default.
- W2919291228 hasConcept C41008148 @default.
- W2919291228 hasConcept C75294576 @default.
- W2919291228 hasConcept C94124525 @default.
- W2919291228 hasConceptScore W2919291228C108583219 @default.
- W2919291228 hasConceptScore W2919291228C115961682 @default.
- W2919291228 hasConceptScore W2919291228C119857082 @default.
- W2919291228 hasConceptScore W2919291228C154945302 @default.
- W2919291228 hasConceptScore W2919291228C37736160 @default.
- W2919291228 hasConceptScore W2919291228C39890363 @default.
- W2919291228 hasConceptScore W2919291228C41008148 @default.
- W2919291228 hasConceptScore W2919291228C75294576 @default.
- W2919291228 hasConceptScore W2919291228C94124525 @default.
- W2919291228 hasLocation W29192912281 @default.
- W2919291228 hasOpenAccess W2919291228 @default.
- W2919291228 hasPrimaryLocation W29192912281 @default.
- W2919291228 hasRelatedWork W2799614062 @default.
- W2919291228 hasRelatedWork W2808256519 @default.
- W2919291228 hasRelatedWork W2919291228 @default.
- W2919291228 hasRelatedWork W2949506716 @default.
- W2919291228 hasRelatedWork W2963196011 @default.
- W2919291228 hasRelatedWork W2971048680 @default.
- W2919291228 hasRelatedWork W3028574926 @default.
- W2919291228 hasRelatedWork W3092989768 @default.
- W2919291228 hasRelatedWork W3184842832 @default.
- W2919291228 hasRelatedWork W4210248601 @default.
- W2919291228 isParatext "false" @default.
- W2919291228 isRetracted "false" @default.
- W2919291228 magId "2919291228" @default.
- W2919291228 workType "article" @default.