Matches in SemOpenAlex for { <https://semopenalex.org/work/W2919729633> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2919729633 abstract "Nowadays, the advancement in the technology has led to the enormous growth of data generated in the digital form. This leads to the situation where to extract interesting and useful knowledge from this vast amount of data becomes an attractive and challenging task. To help the situation, Data Mining techniques can be used which extract the relevant information from a large amount of data by using predictive and descriptive models. Discovering Association Rules is one of the Data Mining Techniques that is widely used today for the purpose of, say, guessing the frequent buying patterns. The most popular algorithms used for this purpose are Apriori and FP-Growth algorithms, other methods simply inherit the properties of any of the two. These techniques for Association Rule Mining generated a large number of rules, leaving the database analyst to go through all and find the interesting ones. These Algorithms alone are not able to extract interesting Association Rules efficiently. So, to improve on performance , this paper proposes a new approach towards Association Rule Mining that makes use of Genetic algorithm and evaluates the generated rules based on Multi-Objective Evaluation over the bakery database. It will find out which products are frequently brought together in bakery, and will show how the proposed system will overcome the drawbacks of traditional Apriori algorithm." @default.
- W2919729633 created "2019-03-11" @default.
- W2919729633 creator A5037584129 @default.
- W2919729633 creator A5040210597 @default.
- W2919729633 creator A5073857554 @default.
- W2919729633 date "2018-08-01" @default.
- W2919729633 modified "2023-10-02" @default.
- W2919729633 title "Novel Genetic Algorithm for Association Rule Mining with Multi-Objective Extraction for Bakery Database" @default.
- W2919729633 cites W1484413656 @default.
- W2919729633 cites W1520890006 @default.
- W2919729633 cites W1538285186 @default.
- W2919729633 cites W1557766146 @default.
- W2919729633 cites W1566934627 @default.
- W2919729633 cites W1597161471 @default.
- W2919729633 cites W1799131156 @default.
- W2919729633 cites W1972870286 @default.
- W2919729633 cites W1990951910 @default.
- W2919729633 cites W2000846246 @default.
- W2919729633 cites W2042875144 @default.
- W2919729633 cites W2052360255 @default.
- W2919729633 cites W2062672474 @default.
- W2919729633 cites W2065789569 @default.
- W2919729633 cites W2093456341 @default.
- W2919729633 cites W2096590200 @default.
- W2919729633 cites W2098318741 @default.
- W2919729633 cites W2114624736 @default.
- W2919729633 cites W2135706281 @default.
- W2919729633 cites W2138050692 @default.
- W2919729633 cites W2143631149 @default.
- W2919729633 cites W2146517105 @default.
- W2919729633 cites W2153028052 @default.
- W2919729633 cites W2184518369 @default.
- W2919729633 cites W3023540311 @default.
- W2919729633 cites W30721590 @default.
- W2919729633 doi "https://doi.org/10.1109/i-smac.2018.8653715" @default.
- W2919729633 hasPublicationYear "2018" @default.
- W2919729633 type Work @default.
- W2919729633 sameAs 2919729633 @default.
- W2919729633 citedByCount "2" @default.
- W2919729633 countsByYear W29197296332020 @default.
- W2919729633 crossrefType "proceedings-article" @default.
- W2919729633 hasAuthorship W2919729633A5037584129 @default.
- W2919729633 hasAuthorship W2919729633A5040210597 @default.
- W2919729633 hasAuthorship W2919729633A5073857554 @default.
- W2919729633 hasConcept C111472728 @default.
- W2919729633 hasConcept C119857082 @default.
- W2919729633 hasConcept C124101348 @default.
- W2919729633 hasConcept C127413603 @default.
- W2919729633 hasConcept C138885662 @default.
- W2919729633 hasConcept C193524817 @default.
- W2919729633 hasConcept C201995342 @default.
- W2919729633 hasConcept C23906176 @default.
- W2919729633 hasConcept C2780451532 @default.
- W2919729633 hasConcept C41008148 @default.
- W2919729633 hasConcept C75553542 @default.
- W2919729633 hasConcept C77088390 @default.
- W2919729633 hasConcept C81440476 @default.
- W2919729633 hasConcept C87146676 @default.
- W2919729633 hasConcept C8880873 @default.
- W2919729633 hasConceptScore W2919729633C111472728 @default.
- W2919729633 hasConceptScore W2919729633C119857082 @default.
- W2919729633 hasConceptScore W2919729633C124101348 @default.
- W2919729633 hasConceptScore W2919729633C127413603 @default.
- W2919729633 hasConceptScore W2919729633C138885662 @default.
- W2919729633 hasConceptScore W2919729633C193524817 @default.
- W2919729633 hasConceptScore W2919729633C201995342 @default.
- W2919729633 hasConceptScore W2919729633C23906176 @default.
- W2919729633 hasConceptScore W2919729633C2780451532 @default.
- W2919729633 hasConceptScore W2919729633C41008148 @default.
- W2919729633 hasConceptScore W2919729633C75553542 @default.
- W2919729633 hasConceptScore W2919729633C77088390 @default.
- W2919729633 hasConceptScore W2919729633C81440476 @default.
- W2919729633 hasConceptScore W2919729633C87146676 @default.
- W2919729633 hasConceptScore W2919729633C8880873 @default.
- W2919729633 hasLocation W29197296331 @default.
- W2919729633 hasOpenAccess W2919729633 @default.
- W2919729633 hasPrimaryLocation W29197296331 @default.
- W2919729633 hasRelatedWork W1964969479 @default.
- W2919729633 hasRelatedWork W1998540199 @default.
- W2919729633 hasRelatedWork W2086052664 @default.
- W2919729633 hasRelatedWork W2139468144 @default.
- W2919729633 hasRelatedWork W2368974936 @default.
- W2919729633 hasRelatedWork W2373936362 @default.
- W2919729633 hasRelatedWork W2376949134 @default.
- W2919729633 hasRelatedWork W2383378197 @default.
- W2919729633 hasRelatedWork W2532722555 @default.
- W2919729633 hasRelatedWork W4200222668 @default.
- W2919729633 isParatext "false" @default.
- W2919729633 isRetracted "false" @default.
- W2919729633 magId "2919729633" @default.
- W2919729633 workType "article" @default.