Matches in SemOpenAlex for { <https://semopenalex.org/work/W2919732894> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2919732894 abstract "Hyperspectral images include richer spectral and spatial information than common images, which are widely used in military, agricultural fields, etc. With the development of sensor technology, the spatial resolution and spectral resolution of hyperspectral images have been improved significantly. However, the disadvantage that there may contain only one part of one object which has different spectral information in hyperspectral images. This will lead to unsatisfactory performance in traditional pixel-level hyperspectral image classification. Thus, a new hyperspectral image classification framework based on convolutional neural network is proposed. First, band selection is adopted to obtain multiple sets of false color images for small sample hyperspectral data. Then, parallel CNNs are introduced to get the classification results of different band combinations. Finally, statistical analysis strategy is performed to obtain the final output result. Experiments show that the classification accuracy of this method is better than that of the previous algorithm on the same dataset." @default.
- W2919732894 created "2019-03-11" @default.
- W2919732894 creator A5000124250 @default.
- W2919732894 creator A5008940717 @default.
- W2919732894 creator A5021934263 @default.
- W2919732894 creator A5031220055 @default.
- W2919732894 date "2018-08-01" @default.
- W2919732894 modified "2023-09-25" @default.
- W2919732894 title "An Image-Level Classification Framework for Hyperspectral Image with CNNs" @default.
- W2919732894 cites W1491705651 @default.
- W2919732894 cites W1533746086 @default.
- W2919732894 cites W1843514792 @default.
- W2919732894 cites W1869808405 @default.
- W2919732894 cites W1948819007 @default.
- W2919732894 cites W1964315230 @default.
- W2919732894 cites W1990895816 @default.
- W2919732894 cites W2029316659 @default.
- W2919732894 cites W2030270830 @default.
- W2919732894 cites W2046511834 @default.
- W2919732894 cites W2064796926 @default.
- W2919732894 cites W2067897118 @default.
- W2919732894 cites W2076889190 @default.
- W2919732894 cites W2123717994 @default.
- W2919732894 cites W2132907499 @default.
- W2919732894 cites W2179290474 @default.
- W2919732894 cites W2334249198 @default.
- W2919732894 cites W2363654498 @default.
- W2919732894 cites W2500751094 @default.
- W2919732894 cites W2587790406 @default.
- W2919732894 cites W2795199140 @default.
- W2919732894 doi "https://doi.org/10.1109/icsp.2018.8652468" @default.
- W2919732894 hasPublicationYear "2018" @default.
- W2919732894 type Work @default.
- W2919732894 sameAs 2919732894 @default.
- W2919732894 citedByCount "1" @default.
- W2919732894 countsByYear W29197328942021 @default.
- W2919732894 crossrefType "proceedings-article" @default.
- W2919732894 hasAuthorship W2919732894A5000124250 @default.
- W2919732894 hasAuthorship W2919732894A5008940717 @default.
- W2919732894 hasAuthorship W2919732894A5021934263 @default.
- W2919732894 hasAuthorship W2919732894A5031220055 @default.
- W2919732894 hasConcept C114700698 @default.
- W2919732894 hasConcept C115961682 @default.
- W2919732894 hasConcept C153180895 @default.
- W2919732894 hasConcept C154945302 @default.
- W2919732894 hasConcept C159078339 @default.
- W2919732894 hasConcept C160633673 @default.
- W2919732894 hasConcept C205372480 @default.
- W2919732894 hasConcept C205649164 @default.
- W2919732894 hasConcept C31972630 @default.
- W2919732894 hasConcept C41008148 @default.
- W2919732894 hasConcept C62649853 @default.
- W2919732894 hasConcept C75294576 @default.
- W2919732894 hasConcept C78660771 @default.
- W2919732894 hasConcept C81363708 @default.
- W2919732894 hasConceptScore W2919732894C114700698 @default.
- W2919732894 hasConceptScore W2919732894C115961682 @default.
- W2919732894 hasConceptScore W2919732894C153180895 @default.
- W2919732894 hasConceptScore W2919732894C154945302 @default.
- W2919732894 hasConceptScore W2919732894C159078339 @default.
- W2919732894 hasConceptScore W2919732894C160633673 @default.
- W2919732894 hasConceptScore W2919732894C205372480 @default.
- W2919732894 hasConceptScore W2919732894C205649164 @default.
- W2919732894 hasConceptScore W2919732894C31972630 @default.
- W2919732894 hasConceptScore W2919732894C41008148 @default.
- W2919732894 hasConceptScore W2919732894C62649853 @default.
- W2919732894 hasConceptScore W2919732894C75294576 @default.
- W2919732894 hasConceptScore W2919732894C78660771 @default.
- W2919732894 hasConceptScore W2919732894C81363708 @default.
- W2919732894 hasLocation W29197328941 @default.
- W2919732894 hasOpenAccess W2919732894 @default.
- W2919732894 hasPrimaryLocation W29197328941 @default.
- W2919732894 hasRelatedWork W233873731 @default.
- W2919732894 hasRelatedWork W2803948506 @default.
- W2919732894 hasRelatedWork W2807839383 @default.
- W2919732894 hasRelatedWork W2886042776 @default.
- W2919732894 hasRelatedWork W2919732894 @default.
- W2919732894 hasRelatedWork W2955667634 @default.
- W2919732894 hasRelatedWork W2969273655 @default.
- W2919732894 hasRelatedWork W3141808356 @default.
- W2919732894 hasRelatedWork W3202305627 @default.
- W2919732894 hasRelatedWork W3024937805 @default.
- W2919732894 isParatext "false" @default.
- W2919732894 isRetracted "false" @default.
- W2919732894 magId "2919732894" @default.
- W2919732894 workType "article" @default.