Matches in SemOpenAlex for { <https://semopenalex.org/work/W2919814211> ?p ?o ?g. }
- W2919814211 endingPage "3841" @default.
- W2919814211 startingPage "3823" @default.
- W2919814211 abstract "Abstract. Forecasting flash floods some hours in advance is still a challenge, especially in environments made up of many small catchments. Hydrometeorological forecasting systems generally allow for predicting the possibility of having very intense rainfall events on quite large areas with good performances, even with 12–24 h of anticipation. However, they are not able to predict the exact rainfall location if we consider portions of a territory of 10 to 1000 km2 as the order of magnitude. The scope of this work is to exploit both observations and modelling sources to improve the discharge prediction in small catchments with a lead time of 2–8 h. The models used to achieve the goal are essentially (i) a probabilistic rainfall nowcasting model able to extrapolate the rainfall evolution from observations, (ii) a non-hydrostatic high-resolution numerical weather prediction (NWP) model and (iii) a distributed hydrological model able to provide a streamflow prediction in each pixel of the studied domain. These tools are used, together with radar observations, in a synergistic way, exploiting the information of each element in order to complement each other. For this purpose observations are used in a frequently updated data assimilation framework to drive the NWP system, whose output is in turn used to improve the information as input to the nowcasting technique in terms of a predicted rainfall volume trend; finally nowcasting and NWP outputs are blended, generating an ensemble of rainfall scenarios used to feed the hydrological model and produce a prediction in terms of streamflow. The flood prediction system is applied to three major events that occurred in the Liguria region (Italy) first to produce a standard analysis on predefined basin control sections and then using a distributed approach that exploits the capabilities of the employed hydrological model. The results obtained for these three analysed events show that the use of the present approach is promising. Even if not in all the cases, the blending technique clearly enhances the prediction capacity of the hydrological nowcasting chain with respect to the use of input coming only from the nowcasting technique; moreover, a worsening of the performance is observed less, and it is nevertheless ascribable to the critical transition between the nowcasting and the NWP model rainfall field." @default.
- W2919814211 created "2019-03-11" @default.
- W2919814211 creator A5010966458 @default.
- W2919814211 creator A5022859398 @default.
- W2919814211 creator A5043562107 @default.
- W2919814211 creator A5045050118 @default.
- W2919814211 creator A5070584082 @default.
- W2919814211 date "2019-09-18" @default.
- W2919814211 modified "2023-10-14" @default.
- W2919814211 title "Using nowcasting technique and data assimilation in a meteorological model to improve very short range hydrological forecasts" @default.
- W2919814211 cites W1421643101 @default.
- W2919814211 cites W1489159237 @default.
- W2919814211 cites W1812647644 @default.
- W2919814211 cites W1984113680 @default.
- W2919814211 cites W1988884397 @default.
- W2919814211 cites W1999750232 @default.
- W2919814211 cites W2004795405 @default.
- W2919814211 cites W2006784925 @default.
- W2919814211 cites W2010560793 @default.
- W2919814211 cites W2021531698 @default.
- W2919814211 cites W2024414272 @default.
- W2919814211 cites W2033213326 @default.
- W2919814211 cites W2033904036 @default.
- W2919814211 cites W2056021206 @default.
- W2919814211 cites W2066136895 @default.
- W2919814211 cites W2068410395 @default.
- W2919814211 cites W2070158856 @default.
- W2919814211 cites W2070255044 @default.
- W2919814211 cites W2073913269 @default.
- W2919814211 cites W2075546096 @default.
- W2919814211 cites W2076318482 @default.
- W2919814211 cites W2077982285 @default.
- W2919814211 cites W2084611009 @default.
- W2919814211 cites W2087121286 @default.
- W2919814211 cites W2088362906 @default.
- W2919814211 cites W2091164145 @default.
- W2919814211 cites W2093934825 @default.
- W2919814211 cites W2094448605 @default.
- W2919814211 cites W2096519104 @default.
- W2919814211 cites W2100936336 @default.
- W2919814211 cites W2108141040 @default.
- W2919814211 cites W2114473878 @default.
- W2919814211 cites W2117910346 @default.
- W2919814211 cites W2123534154 @default.
- W2919814211 cites W2126667637 @default.
- W2919814211 cites W2129005330 @default.
- W2919814211 cites W2137376882 @default.
- W2919814211 cites W2137514347 @default.
- W2919814211 cites W2137823330 @default.
- W2919814211 cites W2140092134 @default.
- W2919814211 cites W2140614606 @default.
- W2919814211 cites W2141290483 @default.
- W2919814211 cites W2142863437 @default.
- W2919814211 cites W2145585966 @default.
- W2919814211 cites W2155565542 @default.
- W2919814211 cites W2156666026 @default.
- W2919814211 cites W2170311168 @default.
- W2919814211 cites W2260605444 @default.
- W2919814211 cites W2261896331 @default.
- W2919814211 cites W2264975561 @default.
- W2919814211 cites W2524680928 @default.
- W2919814211 cites W2528393685 @default.
- W2919814211 cites W2575356794 @default.
- W2919814211 cites W2747171553 @default.
- W2919814211 cites W2747236480 @default.
- W2919814211 cites W2793676070 @default.
- W2919814211 cites W2802893388 @default.
- W2919814211 cites W4249123368 @default.
- W2919814211 doi "https://doi.org/10.5194/hess-23-3823-2019" @default.
- W2919814211 hasPublicationYear "2019" @default.
- W2919814211 type Work @default.
- W2919814211 sameAs 2919814211 @default.
- W2919814211 citedByCount "25" @default.
- W2919814211 countsByYear W29198142112019 @default.
- W2919814211 countsByYear W29198142112020 @default.
- W2919814211 countsByYear W29198142112021 @default.
- W2919814211 countsByYear W29198142112022 @default.
- W2919814211 countsByYear W29198142112023 @default.
- W2919814211 crossrefType "journal-article" @default.
- W2919814211 hasAuthorship W2919814211A5010966458 @default.
- W2919814211 hasAuthorship W2919814211A5022859398 @default.
- W2919814211 hasAuthorship W2919814211A5043562107 @default.
- W2919814211 hasAuthorship W2919814211A5045050118 @default.
- W2919814211 hasAuthorship W2919814211A5070584082 @default.
- W2919814211 hasBestOaLocation W29198142111 @default.
- W2919814211 hasConcept C100725284 @default.
- W2919814211 hasConcept C107054158 @default.
- W2919814211 hasConcept C120417685 @default.
- W2919814211 hasConcept C126645576 @default.
- W2919814211 hasConcept C127313418 @default.
- W2919814211 hasConcept C147947694 @default.
- W2919814211 hasConcept C153294291 @default.
- W2919814211 hasConcept C154945302 @default.
- W2919814211 hasConcept C166957645 @default.
- W2919814211 hasConcept C183195422 @default.
- W2919814211 hasConcept C205649164 @default.
- W2919814211 hasConcept C24552861 @default.
- W2919814211 hasConcept C2781013037 @default.