Matches in SemOpenAlex for { <https://semopenalex.org/work/W2919824850> ?p ?o ?g. }
- W2919824850 endingPage "101" @default.
- W2919824850 startingPage "90" @default.
- W2919824850 abstract "Advances in techniques for automated classification of pointcloud data introduce great opportunities for many new and existing applications. However, with a limited number of labeled points, automated classification by a machine learning model is prone to overfitting and poor generalization. The present paper addresses this problem by inducing controlled noise (on a trained model) generated by invoking conditional random field similarity penalties using nearby features. The method is called Atrous XCRF and works by forcing a trained model to respect the similarity penalties provided by unlabeled data. In a benchmark study carried out using the ISPRS 3D labeling dataset, our technique achieves 84.97% in term of overall accuracy, and 71.05% in term of F1 score. The result is on par with the current best model for the benchmark dataset and has the highest value in term of F1 score." @default.
- W2919824850 created "2019-03-11" @default.
- W2919824850 creator A5011737941 @default.
- W2919824850 creator A5011800251 @default.
- W2919824850 creator A5064543670 @default.
- W2919824850 creator A5072100168 @default.
- W2919824850 date "2019-09-01" @default.
- W2919824850 modified "2023-10-02" @default.
- W2919824850 title "Addressing overfitting on point cloud classification using Atrous XCRF" @default.
- W2919824850 cites W1892952337 @default.
- W2919824850 cites W1964772475 @default.
- W2919824850 cites W1973644502 @default.
- W2919824850 cites W2076063813 @default.
- W2919824850 cites W2088805832 @default.
- W2919824850 cites W2132083787 @default.
- W2919824850 cites W2165698076 @default.
- W2919824850 cites W2172009270 @default.
- W2919824850 cites W2295511148 @default.
- W2919824850 cites W2412782625 @default.
- W2919824850 cites W2480826066 @default.
- W2919824850 cites W2752456892 @default.
- W2919824850 cites W2761129952 @default.
- W2919824850 cites W2790308185 @default.
- W2919824850 cites W2809092204 @default.
- W2919824850 cites W2896259381 @default.
- W2919824850 cites W2919115771 @default.
- W2919824850 cites W4244565819 @default.
- W2919824850 doi "https://doi.org/10.1016/j.isprsjprs.2019.07.002" @default.
- W2919824850 hasPublicationYear "2019" @default.
- W2919824850 type Work @default.
- W2919824850 sameAs 2919824850 @default.
- W2919824850 citedByCount "32" @default.
- W2919824850 countsByYear W29198248502020 @default.
- W2919824850 countsByYear W29198248502021 @default.
- W2919824850 countsByYear W29198248502022 @default.
- W2919824850 countsByYear W29198248502023 @default.
- W2919824850 crossrefType "journal-article" @default.
- W2919824850 hasAuthorship W2919824850A5011737941 @default.
- W2919824850 hasAuthorship W2919824850A5011800251 @default.
- W2919824850 hasAuthorship W2919824850A5064543670 @default.
- W2919824850 hasAuthorship W2919824850A5072100168 @default.
- W2919824850 hasBestOaLocation W29198248502 @default.
- W2919824850 hasConcept C103278499 @default.
- W2919824850 hasConcept C115961682 @default.
- W2919824850 hasConcept C119857082 @default.
- W2919824850 hasConcept C121332964 @default.
- W2919824850 hasConcept C12267149 @default.
- W2919824850 hasConcept C131979681 @default.
- W2919824850 hasConcept C134306372 @default.
- W2919824850 hasConcept C148524875 @default.
- W2919824850 hasConcept C152565575 @default.
- W2919824850 hasConcept C153180895 @default.
- W2919824850 hasConcept C154945302 @default.
- W2919824850 hasConcept C177148314 @default.
- W2919824850 hasConcept C185798385 @default.
- W2919824850 hasConcept C205649164 @default.
- W2919824850 hasConcept C22019652 @default.
- W2919824850 hasConcept C33923547 @default.
- W2919824850 hasConcept C41008148 @default.
- W2919824850 hasConcept C50644808 @default.
- W2919824850 hasConcept C58640448 @default.
- W2919824850 hasConcept C61797465 @default.
- W2919824850 hasConcept C62520636 @default.
- W2919824850 hasConcept C66905080 @default.
- W2919824850 hasConceptScore W2919824850C103278499 @default.
- W2919824850 hasConceptScore W2919824850C115961682 @default.
- W2919824850 hasConceptScore W2919824850C119857082 @default.
- W2919824850 hasConceptScore W2919824850C121332964 @default.
- W2919824850 hasConceptScore W2919824850C12267149 @default.
- W2919824850 hasConceptScore W2919824850C131979681 @default.
- W2919824850 hasConceptScore W2919824850C134306372 @default.
- W2919824850 hasConceptScore W2919824850C148524875 @default.
- W2919824850 hasConceptScore W2919824850C152565575 @default.
- W2919824850 hasConceptScore W2919824850C153180895 @default.
- W2919824850 hasConceptScore W2919824850C154945302 @default.
- W2919824850 hasConceptScore W2919824850C177148314 @default.
- W2919824850 hasConceptScore W2919824850C185798385 @default.
- W2919824850 hasConceptScore W2919824850C205649164 @default.
- W2919824850 hasConceptScore W2919824850C22019652 @default.
- W2919824850 hasConceptScore W2919824850C33923547 @default.
- W2919824850 hasConceptScore W2919824850C41008148 @default.
- W2919824850 hasConceptScore W2919824850C50644808 @default.
- W2919824850 hasConceptScore W2919824850C58640448 @default.
- W2919824850 hasConceptScore W2919824850C61797465 @default.
- W2919824850 hasConceptScore W2919824850C62520636 @default.
- W2919824850 hasConceptScore W2919824850C66905080 @default.
- W2919824850 hasLocation W29198248501 @default.
- W2919824850 hasLocation W29198248502 @default.
- W2919824850 hasOpenAccess W2919824850 @default.
- W2919824850 hasPrimaryLocation W29198248501 @default.
- W2919824850 hasRelatedWork W2608559058 @default.
- W2919824850 hasRelatedWork W2767651786 @default.
- W2919824850 hasRelatedWork W2919824850 @default.
- W2919824850 hasRelatedWork W2947903144 @default.
- W2919824850 hasRelatedWork W2972984751 @default.
- W2919824850 hasRelatedWork W2989932438 @default.
- W2919824850 hasRelatedWork W3011996705 @default.
- W2919824850 hasRelatedWork W3099765033 @default.