Matches in SemOpenAlex for { <https://semopenalex.org/work/W2919864464> ?p ?o ?g. }
- W2919864464 abstract "Author(s): Tafoya, Sara | Advisor(s): Bustamante, Carlos J. | Abstract: Single molecule techniques are uniquely informative for kinetic processes. As a result, in recent years they have become the methods of choice to interrogate many complex biomolecular systems (Bustamante a Tafoya 2017). During my PhD, I used optical tweezers, a technique for single-molecule manipulation, to study various biological processes. First, I revisited the high internal pressure built inside the viral capsid of the bacteriophage phi29 during genome encapsidation (Liu et al. 2014b). During assembly of double-stranded DNA bacteriophages, the viral genome is encapsidated by a DNA packaging motor. High internal pressure builds up inside the viral capsid as a result of entropic and electrostatic repulsive forces resulting from DNA confinement. Previous single-molecule studies have determined the value of the internal pressure to be as high as 110 pN towards the end of DNA packaging. However, this value seemed overly high based on theoretical calculations. Using higher resolution data than in previous studies, my colleagues and I showed that the internal pressure reaches ~ 20 +/- 7 pN at 100% capsid filling, which is in better agreement with previous theoretical models. Second, I determined the molecular mechanism for inter-subunit coordination in a viral ring ATPase. Subunits in multimeric ring motors must coordinate their enzymatic activity to perform their function (Tafoya et al. 2017). The bacteriophage phi29 DNA packaging motor is a pentameric ring ATPase whose subunits have been shown to operate in a highly coordinated manner. Therefore, this system is ideal to investigate how global subunit coordination can arise from stochastic processes and local molecular interactions. Using single-molecule optical tweezers and targeted mutagenesis, I showed that coordination arises from inter-subunit enzymatic regulation.The subunits use their arginine finger to promote nucleotide exchange and to activate ATP hydrolysis in their neighbors. These regulatory processes display similar features to those observed in small GTPases. Third, in light of what I learned about the phi29 DNA packaging motor's operation, I reviewed various mechanisms of small GTPase-like regulation in different motor proteins (Tafoya a Bustamante 2017). In particular, I highlighted the fact that all these mechanisms share a general feature: the motor's function is controlled by stimulation or repression of its ATPase activity, which is regulated allosterically by different factors. Finally, I tested a prediction from fluctuation theorems to minimize the thermodynamic length in a process out of equilibrium (Tafoya et al. 2017b). Genome encapsidation by the phi29 DNA packaging motor is only an example of the multiple non-equilibrium processes occurring in the cell. In fact, to maintain their organization, biological systems must operate far from equilibrium, continuously utilizing and dissipating energy. Non-equilibrium theory is underdeveloped, but recent work has approximated the excess work in processes out of equilibrium. I tested this theory's predictions performing pulling experiments on a DNA hairpin. I found that the predicted minimum-dissipation protocols indeed require significantly less work than naive ones across a wide span of driving velocities." @default.
- W2919864464 created "2019-03-11" @default.
- W2919864464 creator A5069409062 @default.
- W2919864464 date "2017-01-01" @default.
- W2919864464 modified "2023-09-27" @default.
- W2919864464 title "A Single-molecule Approach to Study Multimeric Molecular Motors and Optimal Thermodynamic Length" @default.
- W2919864464 cites W1487063865 @default.
- W2919864464 cites W1524836192 @default.
- W2919864464 cites W1548650385 @default.
- W2919864464 cites W1557627802 @default.
- W2919864464 cites W1564128088 @default.
- W2919864464 cites W1957495451 @default.
- W2919864464 cites W1965883439 @default.
- W2919864464 cites W1967386359 @default.
- W2919864464 cites W1971124985 @default.
- W2919864464 cites W1971934035 @default.
- W2919864464 cites W1973710436 @default.
- W2919864464 cites W1988934709 @default.
- W2919864464 cites W1989266582 @default.
- W2919864464 cites W1995682111 @default.
- W2919864464 cites W2009517241 @default.
- W2919864464 cites W2013138671 @default.
- W2919864464 cites W2016286342 @default.
- W2919864464 cites W2018720646 @default.
- W2919864464 cites W2019606851 @default.
- W2919864464 cites W2020186650 @default.
- W2919864464 cites W2021698338 @default.
- W2919864464 cites W2025505853 @default.
- W2919864464 cites W2026113329 @default.
- W2919864464 cites W2026733658 @default.
- W2919864464 cites W2026904788 @default.
- W2919864464 cites W2032984660 @default.
- W2919864464 cites W2033635225 @default.
- W2919864464 cites W2047687774 @default.
- W2919864464 cites W2052242027 @default.
- W2919864464 cites W2052309340 @default.
- W2919864464 cites W2059029715 @default.
- W2919864464 cites W2059265460 @default.
- W2919864464 cites W2061244090 @default.
- W2919864464 cites W2064618359 @default.
- W2919864464 cites W2066312873 @default.
- W2919864464 cites W2069738597 @default.
- W2919864464 cites W2071950147 @default.
- W2919864464 cites W2072029159 @default.
- W2919864464 cites W2072042527 @default.
- W2919864464 cites W2073292769 @default.
- W2919864464 cites W2074033410 @default.
- W2919864464 cites W2080774305 @default.
- W2919864464 cites W2087439785 @default.
- W2919864464 cites W2094070477 @default.
- W2919864464 cites W2095339585 @default.
- W2919864464 cites W2095713223 @default.
- W2919864464 cites W2112907937 @default.
- W2919864464 cites W2114577844 @default.
- W2919864464 cites W2115062176 @default.
- W2919864464 cites W2121431496 @default.
- W2919864464 cites W2125053230 @default.
- W2919864464 cites W2125312640 @default.
- W2919864464 cites W2126023294 @default.
- W2919864464 cites W2128166055 @default.
- W2919864464 cites W2130964922 @default.
- W2919864464 cites W2135570071 @default.
- W2919864464 cites W2142635246 @default.
- W2919864464 cites W2149090615 @default.
- W2919864464 cites W2151274733 @default.
- W2919864464 cites W2154475799 @default.
- W2919864464 cites W2155680035 @default.
- W2919864464 cites W2159293447 @default.
- W2919864464 cites W2160553303 @default.
- W2919864464 cites W2160844977 @default.
- W2919864464 cites W2164021415 @default.
- W2919864464 cites W2165041848 @default.
- W2919864464 cites W2170353382 @default.
- W2919864464 cites W2193963378 @default.
- W2919864464 cites W2213968760 @default.
- W2919864464 cites W2222881700 @default.
- W2919864464 cites W2277797780 @default.
- W2919864464 cites W2288501256 @default.
- W2919864464 cites W2513966912 @default.
- W2919864464 cites W2553681925 @default.
- W2919864464 cites W2581665428 @default.
- W2919864464 cites W2610194091 @default.
- W2919864464 cites W2802949377 @default.
- W2919864464 cites W62964272 @default.
- W2919864464 hasPublicationYear "2017" @default.
- W2919864464 type Work @default.
- W2919864464 sameAs 2919864464 @default.
- W2919864464 citedByCount "0" @default.
- W2919864464 crossrefType "journal-article" @default.
- W2919864464 hasAuthorship W2919864464A5069409062 @default.
- W2919864464 hasConcept C104292427 @default.
- W2919864464 hasConcept C104317684 @default.
- W2919864464 hasConcept C121332964 @default.
- W2919864464 hasConcept C12554922 @default.
- W2919864464 hasConcept C139425391 @default.
- W2919864464 hasConcept C159467904 @default.
- W2919864464 hasConcept C160408235 @default.
- W2919864464 hasConcept C171250308 @default.
- W2919864464 hasConcept C185592680 @default.
- W2919864464 hasConcept C18747710 @default.