Matches in SemOpenAlex for { <https://semopenalex.org/work/W2920040117> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2920040117 abstract "Colorectal cancer is the second leading cause of cancer deaths in the United States and causes over 50,000 deaths annually. The standard of care for colorectal cancer detection and prevention is an optical colonoscopy and polypectomy. However, over 20% of the polyps are typically missed during a standard colonoscopy procedure and 60% of colorectal cancer cases are attributed to these missed polyps. Surface topography plays a vital role in identification and characterization of lesions, but topographic features often appear subtle to a conventional endoscope. Chromoendoscopy can highlight topographic features of the mucosa and has shown to improve lesion detection rate, but requires dedicated training and increases procedure time. Photometric stereo endoscopy captures this topography but is qualitative due to unknown working distances from each point of mucosa to the endoscope. In this work, we use deep learning to estimate a depth map from an endoscope camera with four alternating light sources. Since endoscopy videos with ground truth depth maps are challenging to attain, we generated synthetic data using graphical rendering from an anatomically realistic 3D colon model and a forward model of a virtual endoscope with alternating light sources. We propose an encoder-decoder style deep network, where the encoder is split into four branches of sub-encoder networks that simultaneously extract features from each of the four sources and fuse these feature maps as the network goes deeper. This is complemented by skip connections, which maintain spatial consistency when the features are decoded. We demonstrate that, when compared to monocular depth estimation, this setup can reduce the average NRMS error for depth estimation in a silicone colon phantom by 38% and in a pig colon by 31%." @default.
- W2920040117 created "2019-03-11" @default.
- W2920040117 creator A5014541382 @default.
- W2920040117 creator A5016396051 @default.
- W2920040117 creator A5046003519 @default.
- W2920040117 creator A5046921602 @default.
- W2920040117 creator A5066969185 @default.
- W2920040117 creator A5067420630 @default.
- W2920040117 creator A5080050834 @default.
- W2920040117 creator A5081651327 @default.
- W2920040117 date "2019-03-04" @default.
- W2920040117 modified "2023-09-27" @default.
- W2920040117 title "Robust photometric stereo endoscopy via deep learning trained on synthetic data (Conference Presentation)" @default.
- W2920040117 doi "https://doi.org/10.1117/12.2509878" @default.
- W2920040117 hasPublicationYear "2019" @default.
- W2920040117 type Work @default.
- W2920040117 sameAs 2920040117 @default.
- W2920040117 citedByCount "1" @default.
- W2920040117 countsByYear W29200401172020 @default.
- W2920040117 crossrefType "proceedings-article" @default.
- W2920040117 hasAuthorship W2920040117A5014541382 @default.
- W2920040117 hasAuthorship W2920040117A5016396051 @default.
- W2920040117 hasAuthorship W2920040117A5046003519 @default.
- W2920040117 hasAuthorship W2920040117A5046921602 @default.
- W2920040117 hasAuthorship W2920040117A5066969185 @default.
- W2920040117 hasAuthorship W2920040117A5067420630 @default.
- W2920040117 hasAuthorship W2920040117A5080050834 @default.
- W2920040117 hasAuthorship W2920040117A5081651327 @default.
- W2920040117 hasConcept C108583219 @default.
- W2920040117 hasConcept C115961682 @default.
- W2920040117 hasConcept C118381688 @default.
- W2920040117 hasConcept C120665830 @default.
- W2920040117 hasConcept C121332964 @default.
- W2920040117 hasConcept C121608353 @default.
- W2920040117 hasConcept C126322002 @default.
- W2920040117 hasConcept C126838900 @default.
- W2920040117 hasConcept C146849305 @default.
- W2920040117 hasConcept C154945302 @default.
- W2920040117 hasConcept C2776820786 @default.
- W2920040117 hasConcept C2777490804 @default.
- W2920040117 hasConcept C2778435480 @default.
- W2920040117 hasConcept C31972630 @default.
- W2920040117 hasConcept C41008148 @default.
- W2920040117 hasConcept C44365914 @default.
- W2920040117 hasConcept C50045419 @default.
- W2920040117 hasConcept C526805850 @default.
- W2920040117 hasConcept C71924100 @default.
- W2920040117 hasConceptScore W2920040117C108583219 @default.
- W2920040117 hasConceptScore W2920040117C115961682 @default.
- W2920040117 hasConceptScore W2920040117C118381688 @default.
- W2920040117 hasConceptScore W2920040117C120665830 @default.
- W2920040117 hasConceptScore W2920040117C121332964 @default.
- W2920040117 hasConceptScore W2920040117C121608353 @default.
- W2920040117 hasConceptScore W2920040117C126322002 @default.
- W2920040117 hasConceptScore W2920040117C126838900 @default.
- W2920040117 hasConceptScore W2920040117C146849305 @default.
- W2920040117 hasConceptScore W2920040117C154945302 @default.
- W2920040117 hasConceptScore W2920040117C2776820786 @default.
- W2920040117 hasConceptScore W2920040117C2777490804 @default.
- W2920040117 hasConceptScore W2920040117C2778435480 @default.
- W2920040117 hasConceptScore W2920040117C31972630 @default.
- W2920040117 hasConceptScore W2920040117C41008148 @default.
- W2920040117 hasConceptScore W2920040117C44365914 @default.
- W2920040117 hasConceptScore W2920040117C50045419 @default.
- W2920040117 hasConceptScore W2920040117C526805850 @default.
- W2920040117 hasConceptScore W2920040117C71924100 @default.
- W2920040117 hasLocation W29200401171 @default.
- W2920040117 hasOpenAccess W2920040117 @default.
- W2920040117 hasPrimaryLocation W29200401171 @default.
- W2920040117 hasRelatedWork W1997748557 @default.
- W2920040117 hasRelatedWork W2049690120 @default.
- W2920040117 hasRelatedWork W2073721218 @default.
- W2920040117 hasRelatedWork W2074449088 @default.
- W2920040117 hasRelatedWork W2081713725 @default.
- W2920040117 hasRelatedWork W2100836452 @default.
- W2920040117 hasRelatedWork W2114938660 @default.
- W2920040117 hasRelatedWork W2242848590 @default.
- W2920040117 hasRelatedWork W2562042876 @default.
- W2920040117 hasRelatedWork W2745134203 @default.
- W2920040117 hasRelatedWork W2794328740 @default.
- W2920040117 hasRelatedWork W2894410663 @default.
- W2920040117 hasRelatedWork W3091221049 @default.
- W2920040117 hasRelatedWork W3134967910 @default.
- W2920040117 hasRelatedWork W3143447746 @default.
- W2920040117 hasRelatedWork W3152803807 @default.
- W2920040117 hasRelatedWork W3180624251 @default.
- W2920040117 hasRelatedWork W3198356099 @default.
- W2920040117 hasRelatedWork W3203533989 @default.
- W2920040117 hasRelatedWork W305659878 @default.
- W2920040117 isParatext "false" @default.
- W2920040117 isRetracted "false" @default.
- W2920040117 magId "2920040117" @default.
- W2920040117 workType "article" @default.