Matches in SemOpenAlex for { <https://semopenalex.org/work/W2920232832> ?p ?o ?g. }
- W2920232832 abstract "Detailed 3D reconstruction is an important challenge with application to robotics, augmented and virtual reality, which has seen impressive progress throughout the past years. Advancements were driven by the availability of depth cameras (RGB-D), as well as increased compute power, e.g. in the form of GPUs -- but also thanks to inclusion of machine learning in the process. Here, we propose X-Section, an RGB-D 3D reconstruction approach that leverages deep learning to make object-level predictions about thicknesses that can be readily integrated into a volumetric multi-view fusion process, where we propose an extension to the popular KinectFusion approach. In essence, our method allows to complete shape in general indoor scenes behind what is sensed by the RGB-D camera, which may be crucial e.g. for robotic manipulation tasks or efficient scene exploration. Predicting object thicknesses rather than volumes allows us to work with comparably high spatial resolution without exploding memory and training data requirements on the employed Convolutional Neural Networks. In a series of qualitative and quantitative evaluations, we demonstrate how we accurately predict object thickness and reconstruct general 3D scenes containing multiple objects." @default.
- W2920232832 created "2019-03-11" @default.
- W2920232832 creator A5006726091 @default.
- W2920232832 creator A5010468717 @default.
- W2920232832 creator A5054998594 @default.
- W2920232832 date "2019-03-03" @default.
- W2920232832 modified "2023-09-27" @default.
- W2920232832 title "X-Section: Cross-section Prediction for Enhanced RGBD Fusion" @default.
- W2920232832 cites W125693051 @default.
- W2920232832 cites W1592011777 @default.
- W2920232832 cites W1665214252 @default.
- W2920232832 cites W171386943 @default.
- W2920232832 cites W1716229439 @default.
- W2920232832 cites W1861492603 @default.
- W2920232832 cites W1971866894 @default.
- W2920232832 cites W1987648924 @default.
- W2920232832 cites W2009422376 @default.
- W2920232832 cites W2012875423 @default.
- W2920232832 cites W2030269333 @default.
- W2920232832 cites W2051829081 @default.
- W2920232832 cites W2120294288 @default.
- W2920232832 cites W2151996626 @default.
- W2920232832 cites W2194775991 @default.
- W2920232832 cites W2336961836 @default.
- W2920232832 cites W2338532005 @default.
- W2920232832 cites W2342277278 @default.
- W2920232832 cites W2444097022 @default.
- W2920232832 cites W2511691466 @default.
- W2920232832 cites W2546066744 @default.
- W2920232832 cites W2550409828 @default.
- W2920232832 cites W2557465155 @default.
- W2920232832 cites W2561232065 @default.
- W2920232832 cites W2582734987 @default.
- W2920232832 cites W2609754928 @default.
- W2920232832 cites W2737940453 @default.
- W2920232832 cites W2748348302 @default.
- W2920232832 cites W2767503796 @default.
- W2920232832 cites W2774692246 @default.
- W2920232832 cites W2777356020 @default.
- W2920232832 cites W2784112303 @default.
- W2920232832 cites W2888144883 @default.
- W2920232832 cites W2891630339 @default.
- W2920232832 cites W2895289727 @default.
- W2920232832 cites W2895439318 @default.
- W2920232832 cites W2902435637 @default.
- W2920232832 cites W2962912205 @default.
- W2920232832 cites W2963150697 @default.
- W2920232832 cites W2963188159 @default.
- W2920232832 cites W2963357556 @default.
- W2920232832 cites W2963453931 @default.
- W2920232832 cites W2963547760 @default.
- W2920232832 cites W2963640720 @default.
- W2920232832 cites W2963735494 @default.
- W2920232832 cites W2964137676 @default.
- W2920232832 cites W2964239644 @default.
- W2920232832 cites W2969014041 @default.
- W2920232832 cites W3099587965 @default.
- W2920232832 hasPublicationYear "2019" @default.
- W2920232832 type Work @default.
- W2920232832 sameAs 2920232832 @default.
- W2920232832 citedByCount "0" @default.
- W2920232832 crossrefType "posted-content" @default.
- W2920232832 hasAuthorship W2920232832A5006726091 @default.
- W2920232832 hasAuthorship W2920232832A5010468717 @default.
- W2920232832 hasAuthorship W2920232832A5054998594 @default.
- W2920232832 hasConcept C108583219 @default.
- W2920232832 hasConcept C111919701 @default.
- W2920232832 hasConcept C121684516 @default.
- W2920232832 hasConcept C154945302 @default.
- W2920232832 hasConcept C2780129039 @default.
- W2920232832 hasConcept C2781238097 @default.
- W2920232832 hasConcept C31972630 @default.
- W2920232832 hasConcept C34413123 @default.
- W2920232832 hasConcept C41008148 @default.
- W2920232832 hasConcept C81363708 @default.
- W2920232832 hasConcept C82990744 @default.
- W2920232832 hasConcept C90509273 @default.
- W2920232832 hasConcept C98045186 @default.
- W2920232832 hasConceptScore W2920232832C108583219 @default.
- W2920232832 hasConceptScore W2920232832C111919701 @default.
- W2920232832 hasConceptScore W2920232832C121684516 @default.
- W2920232832 hasConceptScore W2920232832C154945302 @default.
- W2920232832 hasConceptScore W2920232832C2780129039 @default.
- W2920232832 hasConceptScore W2920232832C2781238097 @default.
- W2920232832 hasConceptScore W2920232832C31972630 @default.
- W2920232832 hasConceptScore W2920232832C34413123 @default.
- W2920232832 hasConceptScore W2920232832C41008148 @default.
- W2920232832 hasConceptScore W2920232832C81363708 @default.
- W2920232832 hasConceptScore W2920232832C82990744 @default.
- W2920232832 hasConceptScore W2920232832C90509273 @default.
- W2920232832 hasConceptScore W2920232832C98045186 @default.
- W2920232832 hasLocation W29202328321 @default.
- W2920232832 hasOpenAccess W2920232832 @default.
- W2920232832 hasPrimaryLocation W29202328321 @default.
- W2920232832 hasRelatedWork W1259797491 @default.
- W2920232832 hasRelatedWork W1681793215 @default.
- W2920232832 hasRelatedWork W1994075312 @default.
- W2920232832 hasRelatedWork W2006424827 @default.
- W2920232832 hasRelatedWork W2093711728 @default.
- W2920232832 hasRelatedWork W2289330816 @default.