Matches in SemOpenAlex for { <https://semopenalex.org/work/W2920288887> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2920288887 abstract "Biometric authentication is a process of identifying and differentiating individuals for security purpose that counts on the distinctive physiological and behavioral characteristics of a person for verification. Dorsal vein pattern is one of the prospective biometrics and we have made successful use of this biometric feature for authentication purpose. This paper describes a novel design and its implementation for identifying individuals on the basis of their vein pattern of dorsal hand. The prime goal has been to establish a method with better Correct Recognition Rate (CRR), low False Acceptance Rate (FAR) and low False Rejection Rate (FRR). For our paper we have used Near Infrared (NIR) image of dorsal hand as it provides better resolution of vein pattern in the image than visible light. This recognition system consists of several steps; they are denoising of the input image using Laplacian Scale Mixture Modeling (LSM), Region of Interest (ROI) extraction from denoised image using valley point detection method, contrast enhancement using pyramid based edge aware filtering method, contrast limited adaptive histogram equalization, binarization, several serial morphological operations and finally authentication using neural networks and Support Vector Machine (SVM) classifier. The experiment was initially performed on a database of 16 distinct subjects where there are 10 raw images of each subject taken in different conditions. The accuracy obtained from experimental results is 96.63%. The scale of the experiment can be extended for more users, which we believe will yield similar success and thus this method of biometric authentication using dorsal vein pattern can be used in security purpose." @default.
- W2920288887 created "2019-03-11" @default.
- W2920288887 creator A5005589922 @default.
- W2920288887 creator A5028676188 @default.
- W2920288887 creator A5033244674 @default.
- W2920288887 creator A5043127688 @default.
- W2920288887 creator A5073146008 @default.
- W2920288887 creator A5074606314 @default.
- W2920288887 date "2018-10-01" @default.
- W2920288887 modified "2023-09-25" @default.
- W2920288887 title "Biometric Authentication Using CNN Features of Dorsal Vein Pattern Extracted from NIR Image" @default.
- W2920288887 cites W1601451127 @default.
- W2920288887 cites W1965137646 @default.
- W2920288887 cites W2097601112 @default.
- W2920288887 cites W2129915901 @default.
- W2920288887 cites W2130728835 @default.
- W2920288887 cites W2593128366 @default.
- W2920288887 cites W2809980976 @default.
- W2920288887 cites W4233749373 @default.
- W2920288887 cites W3138063419 @default.
- W2920288887 doi "https://doi.org/10.1109/tencon.2018.8650439" @default.
- W2920288887 hasPublicationYear "2018" @default.
- W2920288887 type Work @default.
- W2920288887 sameAs 2920288887 @default.
- W2920288887 citedByCount "5" @default.
- W2920288887 countsByYear W29202888872021 @default.
- W2920288887 countsByYear W29202888872022 @default.
- W2920288887 crossrefType "proceedings-article" @default.
- W2920288887 hasAuthorship W2920288887A5005589922 @default.
- W2920288887 hasAuthorship W2920288887A5028676188 @default.
- W2920288887 hasAuthorship W2920288887A5033244674 @default.
- W2920288887 hasAuthorship W2920288887A5043127688 @default.
- W2920288887 hasAuthorship W2920288887A5073146008 @default.
- W2920288887 hasAuthorship W2920288887A5074606314 @default.
- W2920288887 hasConcept C115961682 @default.
- W2920288887 hasConcept C12267149 @default.
- W2920288887 hasConcept C153180895 @default.
- W2920288887 hasConcept C154945302 @default.
- W2920288887 hasConcept C184297639 @default.
- W2920288887 hasConcept C19609008 @default.
- W2920288887 hasConcept C31972630 @default.
- W2920288887 hasConcept C40969351 @default.
- W2920288887 hasConcept C41008148 @default.
- W2920288887 hasConcept C52622490 @default.
- W2920288887 hasConcept C53533937 @default.
- W2920288887 hasConcept C81363708 @default.
- W2920288887 hasConceptScore W2920288887C115961682 @default.
- W2920288887 hasConceptScore W2920288887C12267149 @default.
- W2920288887 hasConceptScore W2920288887C153180895 @default.
- W2920288887 hasConceptScore W2920288887C154945302 @default.
- W2920288887 hasConceptScore W2920288887C184297639 @default.
- W2920288887 hasConceptScore W2920288887C19609008 @default.
- W2920288887 hasConceptScore W2920288887C31972630 @default.
- W2920288887 hasConceptScore W2920288887C40969351 @default.
- W2920288887 hasConceptScore W2920288887C41008148 @default.
- W2920288887 hasConceptScore W2920288887C52622490 @default.
- W2920288887 hasConceptScore W2920288887C53533937 @default.
- W2920288887 hasConceptScore W2920288887C81363708 @default.
- W2920288887 hasLocation W29202888871 @default.
- W2920288887 hasOpenAccess W2920288887 @default.
- W2920288887 hasPrimaryLocation W29202888871 @default.
- W2920288887 hasRelatedWork W1494639889 @default.
- W2920288887 hasRelatedWork W1578258450 @default.
- W2920288887 hasRelatedWork W1977402094 @default.
- W2920288887 hasRelatedWork W2012377557 @default.
- W2920288887 hasRelatedWork W2067275498 @default.
- W2920288887 hasRelatedWork W2169096931 @default.
- W2920288887 hasRelatedWork W2356621584 @default.
- W2920288887 hasRelatedWork W2746048972 @default.
- W2920288887 hasRelatedWork W2785438274 @default.
- W2920288887 hasRelatedWork W3208699438 @default.
- W2920288887 isParatext "false" @default.
- W2920288887 isRetracted "false" @default.
- W2920288887 magId "2920288887" @default.
- W2920288887 workType "article" @default.