Matches in SemOpenAlex for { <https://semopenalex.org/work/W2920302920> ?p ?o ?g. }
- W2920302920 endingPage "59" @default.
- W2920302920 startingPage "47" @default.
- W2920302920 abstract "Biomaterial implantation is followed by an inflammatory cascade dominated by macrophages, which determine implant acceptance or rejection through pro- and anti-inflammatory polarization states (Anderson et al., 2008; Brown and Badylak, 2013). It is known that chemical signals such as bacterial endotoxins and cytokines (IL4) can direct macrophage polarization (Mantovani et al., 2004); however, recent evidence implicates biophysical cues in this process (McWhorter et al., 2015; Patel et al., 2012). Here we report that THP-1 derived macrophages cultured on collagen-coated polyacrylamide gels of varying stiffness adapt their polarization state, functional roles and migration mode according to the stiffness of the underlying substrate. Through gene expression and protein secretion analysis, we show that stiff polyacrylamide gels (323 kPa) prime macrophages towards a pro-inflammatory phenotype with impaired phagocytosis in macrophages, while soft (11 kPa) and medium (88 kPa) stiffness gels prime cells towards an anti-inflammatory, highly phagocytic phenotype. Furthermore, we show that stiffness dictates the migration mode of macrophages; on soft and medium stiffness gels, cells display Rho-A kinase (ROCK)-dependent, podosome-independent fast amoeboid migration and on stiff gels they adopt a ROCK-independent, podosome-dependent slow mesenchymal migration mode. We also provide a mechanistic insight into this process by showing that the anti-inflammatory property of macrophages on soft and medium gels is ROCK-dependent and independent of the ligand presented to them. Together, our results demonstrate that macrophages adapt their polarization, function and migration mode in response to the stiffness of the underlying substrate and suggest that biomaterial stiffness is capable of directing macrophage behaviour independent of the biochemical cues being presented to them. The results from this study establish an important role for substrate stiffness in directing macrophage behaviour, and will lead to the design of immuno-informed biomaterials that are capable of modulating the macrophage response after implantation. STATEMENT OF SIGNIFICANCE: Biomaterial implantation is followed by an inflammatory cascade dominated by macrophages, which determine implant acceptance or rejection through pro- and anti-inflammatory polarization states. It is known that chemical signals can direct macrophage polarization; however, recent evidence implicates biophysical cues in this process. Here we report that macrophages cultured on gels of varying stiffness adapt their polarization state, functional roles and migration mode according to the stiffness of the underlying substrate. The results from this study establish an important role for substrate stiffness in directing macrophage behaviour, and will lead to the design of immuno-informed biomaterials that are capable of modulating the macrophage response after implantation." @default.
- W2920302920 created "2019-03-11" @default.
- W2920302920 creator A5021022247 @default.
- W2920302920 creator A5045482826 @default.
- W2920302920 creator A5050121499 @default.
- W2920302920 creator A5055855804 @default.
- W2920302920 creator A5076063590 @default.
- W2920302920 date "2019-04-01" @default.
- W2920302920 modified "2023-10-17" @default.
- W2920302920 title "Material stiffness influences the polarization state, function and migration mode of macrophages" @default.
- W2920302920 cites W1489759013 @default.
- W2920302920 cites W1506658790 @default.
- W2920302920 cites W1518095394 @default.
- W2920302920 cites W1797422316 @default.
- W2920302920 cites W1928407788 @default.
- W2920302920 cites W1966164421 @default.
- W2920302920 cites W1969905647 @default.
- W2920302920 cites W1972348350 @default.
- W2920302920 cites W1974170815 @default.
- W2920302920 cites W1980845037 @default.
- W2920302920 cites W1985859986 @default.
- W2920302920 cites W1987513395 @default.
- W2920302920 cites W1989600848 @default.
- W2920302920 cites W1992102409 @default.
- W2920302920 cites W1995063875 @default.
- W2920302920 cites W2006826186 @default.
- W2920302920 cites W2008962117 @default.
- W2920302920 cites W2020744745 @default.
- W2920302920 cites W2022084371 @default.
- W2920302920 cites W2025522134 @default.
- W2920302920 cites W2027216673 @default.
- W2920302920 cites W2028288720 @default.
- W2920302920 cites W2028763115 @default.
- W2920302920 cites W2035516992 @default.
- W2920302920 cites W2045149132 @default.
- W2920302920 cites W2048799837 @default.
- W2920302920 cites W2050286820 @default.
- W2920302920 cites W2054635074 @default.
- W2920302920 cites W2065054671 @default.
- W2920302920 cites W2070438219 @default.
- W2920302920 cites W2070855360 @default.
- W2920302920 cites W2076915274 @default.
- W2920302920 cites W2086641174 @default.
- W2920302920 cites W2091039903 @default.
- W2920302920 cites W2093162963 @default.
- W2920302920 cites W2093705034 @default.
- W2920302920 cites W2094644744 @default.
- W2920302920 cites W2096147603 @default.
- W2920302920 cites W2103052217 @default.
- W2920302920 cites W2105127696 @default.
- W2920302920 cites W2107551122 @default.
- W2920302920 cites W2112346252 @default.
- W2920302920 cites W2114845386 @default.
- W2920302920 cites W2124059797 @default.
- W2920302920 cites W2125219817 @default.
- W2920302920 cites W2134208433 @default.
- W2920302920 cites W2144724079 @default.
- W2920302920 cites W2148328620 @default.
- W2920302920 cites W2155859877 @default.
- W2920302920 cites W2167244316 @default.
- W2920302920 cites W2167279371 @default.
- W2920302920 cites W2167830630 @default.
- W2920302920 cites W2171303172 @default.
- W2920302920 cites W2197106873 @default.
- W2920302920 cites W2522866345 @default.
- W2920302920 cites W2592521807 @default.
- W2920302920 cites W2622269865 @default.
- W2920302920 cites W2792895473 @default.
- W2920302920 doi "https://doi.org/10.1016/j.actbio.2019.02.048" @default.
- W2920302920 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30826478" @default.
- W2920302920 hasPublicationYear "2019" @default.
- W2920302920 type Work @default.
- W2920302920 sameAs 2920302920 @default.
- W2920302920 citedByCount "216" @default.
- W2920302920 countsByYear W29203029202019 @default.
- W2920302920 countsByYear W29203029202020 @default.
- W2920302920 countsByYear W29203029202021 @default.
- W2920302920 countsByYear W29203029202022 @default.
- W2920302920 countsByYear W29203029202023 @default.
- W2920302920 crossrefType "journal-article" @default.
- W2920302920 hasAuthorship W2920302920A5021022247 @default.
- W2920302920 hasAuthorship W2920302920A5045482826 @default.
- W2920302920 hasAuthorship W2920302920A5050121499 @default.
- W2920302920 hasAuthorship W2920302920A5055855804 @default.
- W2920302920 hasAuthorship W2920302920A5076063590 @default.
- W2920302920 hasConcept C12554922 @default.
- W2920302920 hasConcept C141073059 @default.
- W2920302920 hasConcept C142669718 @default.
- W2920302920 hasConcept C1491633281 @default.
- W2920302920 hasConcept C159985019 @default.
- W2920302920 hasConcept C160448771 @default.
- W2920302920 hasConcept C185592680 @default.
- W2920302920 hasConcept C192562407 @default.
- W2920302920 hasConcept C198826908 @default.
- W2920302920 hasConcept C202751555 @default.
- W2920302920 hasConcept C2776682551 @default.
- W2920302920 hasConcept C2779244956 @default.
- W2920302920 hasConcept C2779372316 @default.