Matches in SemOpenAlex for { <https://semopenalex.org/work/W2920331395> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2920331395 endingPage "1445" @default.
- W2920331395 startingPage "1434" @default.
- W2920331395 abstract "Network embedding aims to learn distributed vector representations of nodes in a network. The problem of network embedding is fundamentally important. It plays crucial roles in many applications, such as node classification, link prediction, and so on. As the real-world networks are often sparse with few observed links, many recent works have utilized the local and global network structure proximity with shallow models for better network embedding. In reality, each node is usually associated with rich attributes. Some attributed network embedding models leveraged the node attributes in these shallow network embedding models to alleviate the data sparsity issue. Nevertheless, the underlying structure of the network is complex. What is more, the connection between the network structure and node attributes is also hidden. Thus, these previous shallow models fail to capture the nonlinear deep information embedded in the attributed network, resulting in the suboptimal embedding results. In this paper, we propose a deep attributed network embedding framework to capture the complex structure and attribute information. Specifically, we first adopt a personalized random walk-based model to capture the interaction between network structure and node attributes from various degrees of proximity. After that, we construct an enhanced matrix representation of the attributed network by summarizing the various degrees of proximity. Then, we design a deep neural network to exploit the nonlinear complex information in the enhanced matrix for network embedding. Thus, the proposed framework could capture the complex attributed network structure by preserving both the various degrees of network structure and node attributes in a unified framework. Finally, empirical experiments show the effectiveness of our proposed framework on a variety of network embedding-based tasks." @default.
- W2920331395 created "2019-03-11" @default.
- W2920331395 creator A5033706423 @default.
- W2920331395 creator A5050609316 @default.
- W2920331395 creator A5051332325 @default.
- W2920331395 creator A5080738591 @default.
- W2920331395 creator A5091519094 @default.
- W2920331395 date "2021-03-01" @default.
- W2920331395 modified "2023-10-15" @default.
- W2920331395 title "Deep Attributed Network Embedding by Preserving Structure and Attribute Information" @default.
- W2920331395 cites W1720514416 @default.
- W2920331395 cites W1979584682 @default.
- W2920331395 cites W1994002853 @default.
- W2920331395 cites W1998029376 @default.
- W2920331395 cites W2001141328 @default.
- W2920331395 cites W2019786737 @default.
- W2920331395 cites W2028988057 @default.
- W2920331395 cites W2090891622 @default.
- W2920331395 cites W2097308346 @default.
- W2920331395 cites W2106545428 @default.
- W2920331395 cites W2107569009 @default.
- W2920331395 cites W2108614537 @default.
- W2920331395 cites W2114315281 @default.
- W2920331395 cites W2124168655 @default.
- W2920331395 cites W2143570397 @default.
- W2920331395 cites W2157331557 @default.
- W2920331395 cites W2202083088 @default.
- W2920331395 cites W2387462954 @default.
- W2920331395 cites W2390938437 @default.
- W2920331395 cites W2393319904 @default.
- W2920331395 cites W2408744528 @default.
- W2920331395 cites W2585247128 @default.
- W2920331395 cites W2587290924 @default.
- W2920331395 cites W2598545596 @default.
- W2920331395 cites W2605350416 @default.
- W2920331395 cites W2767460050 @default.
- W2920331395 cites W2783545836 @default.
- W2920331395 cites W2798908418 @default.
- W2920331395 cites W2799012401 @default.
- W2920331395 cites W2808867307 @default.
- W2920331395 cites W2809280072 @default.
- W2920331395 cites W2907872323 @default.
- W2920331395 cites W2950723285 @default.
- W2920331395 cites W2963224980 @default.
- W2920331395 cites W2963323306 @default.
- W2920331395 cites W3104097132 @default.
- W2920331395 cites W3105705953 @default.
- W2920331395 cites W3122153094 @default.
- W2920331395 doi "https://doi.org/10.1109/tsmc.2019.2897152" @default.
- W2920331395 hasPublicationYear "2021" @default.
- W2920331395 type Work @default.
- W2920331395 sameAs 2920331395 @default.
- W2920331395 citedByCount "24" @default.
- W2920331395 countsByYear W29203313952019 @default.
- W2920331395 countsByYear W29203313952020 @default.
- W2920331395 countsByYear W29203313952021 @default.
- W2920331395 countsByYear W29203313952022 @default.
- W2920331395 countsByYear W29203313952023 @default.
- W2920331395 crossrefType "journal-article" @default.
- W2920331395 hasAuthorship W2920331395A5033706423 @default.
- W2920331395 hasAuthorship W2920331395A5050609316 @default.
- W2920331395 hasAuthorship W2920331395A5051332325 @default.
- W2920331395 hasAuthorship W2920331395A5080738591 @default.
- W2920331395 hasAuthorship W2920331395A5091519094 @default.
- W2920331395 hasConcept C154945302 @default.
- W2920331395 hasConcept C2988224531 @default.
- W2920331395 hasConcept C41008148 @default.
- W2920331395 hasConcept C41608201 @default.
- W2920331395 hasConcept C80444323 @default.
- W2920331395 hasConceptScore W2920331395C154945302 @default.
- W2920331395 hasConceptScore W2920331395C2988224531 @default.
- W2920331395 hasConceptScore W2920331395C41008148 @default.
- W2920331395 hasConceptScore W2920331395C41608201 @default.
- W2920331395 hasConceptScore W2920331395C80444323 @default.
- W2920331395 hasFunder F4320321001 @default.
- W2920331395 hasFunder F4320334897 @default.
- W2920331395 hasFunder F4320335787 @default.
- W2920331395 hasIssue "3" @default.
- W2920331395 hasLocation W29203313951 @default.
- W2920331395 hasOpenAccess W2920331395 @default.
- W2920331395 hasPrimaryLocation W29203313951 @default.
- W2920331395 hasRelatedWork W1503053695 @default.
- W2920331395 hasRelatedWork W2541017027 @default.
- W2920331395 hasRelatedWork W2562338087 @default.
- W2920331395 hasRelatedWork W2781888261 @default.
- W2920331395 hasRelatedWork W2799921164 @default.
- W2920331395 hasRelatedWork W2806860970 @default.
- W2920331395 hasRelatedWork W2892722436 @default.
- W2920331395 hasRelatedWork W3096054746 @default.
- W2920331395 hasRelatedWork W3107474891 @default.
- W2920331395 hasRelatedWork W4285224442 @default.
- W2920331395 hasVolume "51" @default.
- W2920331395 isParatext "false" @default.
- W2920331395 isRetracted "false" @default.
- W2920331395 magId "2920331395" @default.
- W2920331395 workType "article" @default.