Matches in SemOpenAlex for { <https://semopenalex.org/work/W2920341628> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2920341628 abstract "Small animal imaging is essential in building a bridge from basic science to the clinic by providing the confidence necessary to move new cancer therapies to patients. However, there is considerable variability in preclinical imaging, including tumor volume estimations based on tumor segmentation procedures which can be clearly user-biased. Our group is engaged in developing quantitative imaging methods which will be applied in the preclinical arm of a co-clinical trial studying synergy between anti-PD-1 treatment and radiotherapy using a genetically engineered mouse model of soft tissue sarcoma. This study focuses on a convolutional neural network (CNN)-based method for automatic tumor segmentation based on multimodal MRI images, i.e. T1 weighted, T2 weighted and T1 weighted with contrast agent. Our images were acquired on a 7.0 T Bruker Biospec small animal MRI scanner. Preliminary results show that our U-net structure and 3D patch-wise approach using both Dice and cross entropy loss functions delivers strong segmentation results. We have also compared single performance using only T2 weighted versus multimodal MR images for CNN segmentation. Our results showthat Dice similarity coefficient were higher when using multimodal versus single T2 weighted data (0.84 ± 0.05 and 0.81 ± 0.03). In conclusion, we successfully established a segmentation method for preclinical MR sarcoma data based on deep learning. This approach has the advantage of reducing user bias in tumor segmentation and improving the accuracy and precision of tumor volume estimations for co-clinical cancer trials." @default.
- W2920341628 created "2019-03-11" @default.
- W2920341628 creator A5012481366 @default.
- W2920341628 creator A5046928479 @default.
- W2920341628 creator A5061908198 @default.
- W2920341628 creator A5067317237 @default.
- W2920341628 date "2019-03-01" @default.
- W2920341628 modified "2023-09-26" @default.
- W2920341628 title "Multi-modal MRI segmentation of sarcoma tumors using convolutional neural networks" @default.
- W2920341628 cites W1884191083 @default.
- W2920341628 cites W2007179675 @default.
- W2920341628 cites W2020617188 @default.
- W2920341628 cites W2026873715 @default.
- W2920341628 cites W2082526668 @default.
- W2920341628 cites W2301358467 @default.
- W2920341628 cites W2608353599 @default.
- W2920341628 cites W2896909802 @default.
- W2920341628 doi "https://doi.org/10.1117/12.2512822" @default.
- W2920341628 hasPublicationYear "2019" @default.
- W2920341628 type Work @default.
- W2920341628 sameAs 2920341628 @default.
- W2920341628 citedByCount "0" @default.
- W2920341628 crossrefType "proceedings-article" @default.
- W2920341628 hasAuthorship W2920341628A5012481366 @default.
- W2920341628 hasAuthorship W2920341628A5046928479 @default.
- W2920341628 hasAuthorship W2920341628A5061908198 @default.
- W2920341628 hasAuthorship W2920341628A5067317237 @default.
- W2920341628 hasConcept C108583219 @default.
- W2920341628 hasConcept C124504099 @default.
- W2920341628 hasConcept C153180895 @default.
- W2920341628 hasConcept C154945302 @default.
- W2920341628 hasConcept C163892561 @default.
- W2920341628 hasConcept C22029948 @default.
- W2920341628 hasConcept C2524010 @default.
- W2920341628 hasConcept C33923547 @default.
- W2920341628 hasConcept C41008148 @default.
- W2920341628 hasConcept C81363708 @default.
- W2920341628 hasConcept C89600930 @default.
- W2920341628 hasConceptScore W2920341628C108583219 @default.
- W2920341628 hasConceptScore W2920341628C124504099 @default.
- W2920341628 hasConceptScore W2920341628C153180895 @default.
- W2920341628 hasConceptScore W2920341628C154945302 @default.
- W2920341628 hasConceptScore W2920341628C163892561 @default.
- W2920341628 hasConceptScore W2920341628C22029948 @default.
- W2920341628 hasConceptScore W2920341628C2524010 @default.
- W2920341628 hasConceptScore W2920341628C33923547 @default.
- W2920341628 hasConceptScore W2920341628C41008148 @default.
- W2920341628 hasConceptScore W2920341628C81363708 @default.
- W2920341628 hasConceptScore W2920341628C89600930 @default.
- W2920341628 hasLocation W29203416281 @default.
- W2920341628 hasOpenAccess W2920341628 @default.
- W2920341628 hasPrimaryLocation W29203416281 @default.
- W2920341628 hasRelatedWork W2342591535 @default.
- W2920341628 hasRelatedWork W2593118890 @default.
- W2920341628 hasRelatedWork W2726153085 @default.
- W2920341628 hasRelatedWork W2762006829 @default.
- W2920341628 hasRelatedWork W2769435486 @default.
- W2920341628 hasRelatedWork W2920794225 @default.
- W2920341628 hasRelatedWork W3121324630 @default.
- W2920341628 hasRelatedWork W4220708658 @default.
- W2920341628 hasRelatedWork W4221141253 @default.
- W2920341628 hasRelatedWork W4282548238 @default.
- W2920341628 isParatext "false" @default.
- W2920341628 isRetracted "false" @default.
- W2920341628 magId "2920341628" @default.
- W2920341628 workType "article" @default.