Matches in SemOpenAlex for { <https://semopenalex.org/work/W2920502473> ?p ?o ?g. }
- W2920502473 endingPage "1280" @default.
- W2920502473 startingPage "1272" @default.
- W2920502473 abstract "No AccessEngineering NotesTime-Domain System Identification of Helicopters Using Nonlinear Acceleration and Jerk Prediction ModelSagar Setu, Abhishek Abhishek and C. VenkatesanSagar SetuIndian Institute of Technology Kanpur, Kanpur 208 016, India*Graduate Student, Department of Aerospace Engineering; .Search for more papers by this author, Abhishek AbhishekIndian Institute of Technology Kanpur, Kanpur 208 016, India†Associate Professor, Department of Aerospace Engineering; . Member AIAA.Search for more papers by this author and C. VenkatesanIndian Institute of Technology Kanpur, Kanpur 208 016, India‡Visiting Professor, Department of Mechanical Engineering; . Member AIAA.Search for more papers by this authorPublished Online:4 Mar 2019https://doi.org/10.2514/1.C035273SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Setu S., Abhishek A. and Venkatesan C., “Framework for Attitude Controller Development Using Physics Based Flight Dynamics and Hardware-in-the-Loop Simulation for Rotary Wing UAVs,” 73rd American Helicopter Society Annual Forum [CD-ROM], AHS International, Alexandria, VA, May 2017. Google Scholar[2] Cai G., Chen B. M., Lee T. H. and Lum K.-Y., “Comprehensive Nonlinear Modeling of a Miniature Unmanned Helicopter,” Journal of the American Helicopter Society, Vol. 57, No. 1, 2012, pp. 1–13. doi:https://doi.org/10.4050/JAHS.57.012004 CrossrefGoogle Scholar[3] Arambel P., Azinheira J., Bariant P., Bava R., Boland J., Brandt M., Breeman J., Bruce P., Bucharles A., Caldwell B. and et al., “System Identification for Integrated Aircraft Development and Flight Testing,” RTO Meeting Proceedings 11 for RTO Systems Concepts and Integration Panel (SCI) Symposium, Madrid, Spain, May 1998. Google Scholar[4] Tischler M. B. and Cauffman M. G., “Frequency-Response Method for Rotorcraft System Identification: Flight Applications to BO 105 Coupled Rotor/Fuselage Dynamics,” Journal of the American Helicopter Society, Vol. 37, No. 3, 1992, pp. 3–17. doi:https://doi.org/10.4050/JAHS.37.3 CrossrefGoogle Scholar[5] Tischler M. B. and Remple R. K., “Aircraft and Rotorcraft System Identification,” AIAA, Reston, VA, 2006, pp. 83–450. doi:https://doi.org/10.2514/4.868207 Google Scholar[6] Zivan L. and Tischler M. B., “Development of a Full Flight Envelope Helicopter Simulation Using System Identification,” Journal of the American Helicopter Society, Vol. 55, No. 2, 2010, Paper 22003. doi:https://doi.org/10.4050/JAHS.55.022003 CrossrefGoogle Scholar[7] Cheng R. P., Tischler M. B. and Schulein G. J., “R-MAX Helicopter State-Space Model Identification for Hover and Forward-Flight,” Journal of the American Helicopter Society, Vol. 51, No. 2, 2006, pp. 202–210. doi:https://doi.org/10.4050/JAHS.51.202 CrossrefGoogle Scholar[8] Theodore C. R., Tischler M. B. and Colbourne J. D., “Rapid Frequency-Domain Modeling Methods for Unmanned Aerial Vehicle Flight Control Applications,” Journal of Aircraft, Vol. 41, No. 4, 2004, pp. 735–743. doi:https://doi.org/10.2514/1.4671 LinkGoogle Scholar[9] Mettler B., Tischler M. B. and Kanade T., “System Identification Modeling of a Small-Scale Unmanned Rotorcraft for Flight Control Design,” Journal of the American Helicopter Society, Vol. 47, No. 1, 2002, pp. 50–63. doi:https://doi.org/10.4050/JAHS.47.50 CrossrefGoogle Scholar[10] Mettler B., “Modeling Small-Scale Unmanned Rotorcraft for Advanced Flight Control Design,” Ph.D. Thesis, Carnegie Mellon Univ., Pittsburgh, PA, 2001. Google Scholar[11] Fu K.-H. and Kaletka J., “Frequency-Domain Identification of BO 105 Derivative Models with Rotor Degrees of Freedom,” Journal of the American Helicopter Society, Vol. 38, No. 1, 1993, pp. 73–83. doi:https://doi.org/10.4050/JAHS.38.73 CrossrefGoogle Scholar[12] Hamel P. G. and Kaletka J., “Advances in Rotorcraft System Identification,” Progress in Aerospace Sciences, Vol. 33, No. 3, 1997, pp. 259–284. doi:https://doi.org/10.1016/S0376-0421(96)00005-X CrossrefGoogle Scholar[13] Ballin M. G., “Validation of a Real-Time Engineering Simulation of the UH-60A Helicopter,” NASA TM-88360, 1987. Google Scholar[14] Ballin M. G. and Dalang-Secre´tan M., “Validation of the Dynamic Response of a Blade-Element UH-60 Simulation Model in Hovering Flight,” Journal of the American Helicopter Society, Vol. 36, No. 4, 1991, pp. 77–88. doi:https://doi.org/10.4050/JAHS.36.77 CrossrefGoogle Scholar[15] Fletcher J. W., “Identification of UH-60 Stability Derivative Models in Hover from Flight Test Data,” Journal of the American Helicopter Society, Vol. 40, No. 1, 1995, pp. 32–46. doi:https://doi.org/10.4050/JAHS.40.32 CrossrefGoogle Scholar[16] Shim D. H., Kim H. J. and Sastry S., “Control System Design for Rotorcraft-Based Unmanned Aerial Vehicles Using Time-Domain System Identification,” Proceedings of the 2000 IEEE International Conference on Control Applications, IEEE Publ., Piscataway, NJ, 2000, pp. 808–813. doi:https://doi.org/10.1109/CCA.2000.897539 Google Scholar[17] Hashimoto S., Ogawa T., Adachi S., Tan A. and Miyamori G., “System Identification Experiments on a Large-Scale Unmanned Helicopter for Autonomous Flight,” Proceedings of the 2000 IEEE International Conference on Control Applications, IEEE Publ., Piscataway, NJ, 2000, pp. 850–855. doi:https://doi.org/10.1109/CCA.2000.897547 Google Scholar[18] Li P. and Postlethwaite I., “Subspace and Bootstrap-Based Techniques for Helicopter Model Identification,” Journal of the American Helicopter Society, Vol. 56, No. 1, 2011, Paper 12002. doi:https://doi.org/10.4050/JAHS.56.012002 CrossrefGoogle Scholar[19] Kumar M. V., Omkar S., Ganguli R., Sampath P. and Suresh S., “Identification of Helicopter Dynamics Using Recurrent Neural Networks and Flight Data,” Journal of the American Helicopter Society, Vol. 51, No. 2, 2006, pp. 164–174. doi:https://doi.org/10.4050/JAHS.51.164 CrossrefGoogle Scholar[20] Kumar R., Ganguli R., Omkar S. and Kumar M. V., “Rotorcraft Parameter Identification from Real Time Flight Data,” Journal of Aircraft, Vol. 45, No. 1, 2008, pp. 333–341. doi:https://doi.org/10.2514/1.32024 LinkGoogle Scholar[21] Samal M. K., Anavatti S. and Garratt M., “Neural Network Based System Identification for Autonomous Flight of an Eagle Helicopter,” Proceedings of the 17th World Congress of the International Federation of Automatic Control, Science Direct [Online], 2008, pp. 6–11. doi:https://doi.org/10.3182/20080706-5-KR-1001.01254 Google Scholar[22] Schafroth D., Bermes C., Bouabdallah S. and Siegwart R., “Modeling, System Identification and Robust Control of a Coaxial Micro Helicopter,” Control Engineering Practice, Vol. 18, No. 7, 2010, pp. 700–711. doi:https://doi.org/10.1016/j.conengprac.2010.02.004 CrossrefGoogle Scholar[23] Adiprawita W., Ahmad A. S. and Sembiring J., “Automated Flight Test and System Identification for Rotary Wing Small Aerial Platform Using Frequency Responses Analysis,” Journal of Bionic Engineering, Vol. 4, No. 4, 2007, pp. 237–244. doi:https://doi.org/10.1016/S1672-6529(07)60037-7 CrossrefGoogle Scholar[24] Adiprawita W., Ahmad A. S. and Semibiring J., “Hardware in the Loop Simulator in UAV Rapid Development Life Cycle,” Proceedings of the International Conference on Intelligent Unmanned System (ICIUS 2007), Paper ICIUS2007-A006, Bali, Indonesia, Oct. 2007. Google Scholar[25] Budiyono A., Yoon K. J. and Daniel F. D., “Integrated Identification Modeling of Rotorcraft-Based Unmanned Aerial Vehicle,” 17th Mediterranean Conference on Control and Automation, 2009. MED’09, IEEE Publ., Piscataway, NJ, 2009, pp. 898–903. doi:https://doi.org/10.1109/MED.2009.5164659 Google Scholar[26] Morelli E., “Practical Aspects of the Equation-Error Method for Aircraft Parameter Estimation,” AIAA Atmospheric Flight Mechanics Conference and Exhibit, AIAA Paper 2006-6144, 2006. doi:https://doi.org/10.2514/6.2006-6144 LinkGoogle Scholar[27] Grauer J., Conroy J., Hubbard J., Humbert J. and Pines D., “System Identification of a Miniature Helicopter,” Journal of Aircraft, Vol. 46, No. 4, 2009, pp. 1260–1269. doi:https://doi.org/10.2514/1.40561 LinkGoogle Scholar[28] Lei X. and Du Y., “A Linear Domain System Identification for Small Unmanned Aerial Rotorcraft Based on Adaptive Genetic Algorithm,” Journal of Bionic Engineering, Vol. 7, No. 2, 2010, pp. 142–149. doi:https://doi.org/10.1016/S1672-6529(09)60200-6 CrossrefGoogle Scholar[29] Song B., Mills J. K., Liu Y. and Fan C., “Nonlinear Dynamic Modeling and Control of a Small-Scale Helicopter,” International Journal of Control, Automation and Systems, Vol. 8, No. 3, 2010, pp. 534–543. doi:https://doi.org/10.1007/s12555-010-0306-5 CrossrefGoogle Scholar[30] Raptis I. A., Valavanis K. P. and Moreno W. A., “System Identification and Discrete Nonlinear Control of Miniature Helicopters Using Backstepping,” Journal of Intelligent and Robotic Systems, Vol. 55, Nos. 2–3, 2009, pp. 223–243. doi:https://doi.org/10.1007/s10846-008-9295-5 CrossrefGoogle Scholar[31] Raptis I. A., Valavanis K. P., Kandel A. and Moreno W. A., “System Identification for a Miniature Helicopter at Hover Using Fuzzy Models,” Journal of Intelligent and Robotic Systems, Vol. 56, No. 3, 2009, pp. 345–362. doi:https://doi.org/10.1007/s10846-009-9320-3 CrossrefGoogle Scholar[32] Hrishikeshavan V., Shrestha E., Chopra I. and Humbert J. S., “Controllability Analysis of a Quadrotor in Hover Using Empirical Gramians,” AHS International Technical Meeting, 7th VTOL Unmanned Aircraft Systems Program [CD-ROM], AHS International, Alexandria, VA, Jan. 2017. Google Scholar[33] Abbeel P., Ganapathi V. and Ng A. Y., “Learning Vehicular Dynamics, with Application to Modeling Helicopters,” Advances in Neural Information Processing Systems 18, MIT Press, 2006, pp. 1–8. Google Scholar[34] Abbeel P., Coates A., Quigley M. and Ng A. Y., “An Application of Reinforcement Learning to Aerobatic Helicopter Flight,” Advances in Neural Information Processing Systems 19, MIT Press, 2007, pp. 1–8. Google Scholar[35] Abbeel P. and Ng A. Y., “Learning First-Order Markov Models for Control,” Advances in Neural Information Processing Systems 17, MIT Press, 2005, pp. 1–8. Google Scholar[36] Heffley R. K. and Mnich M. A., “Minimum-Complexity Helicopter Simulation Math Model,” NASA TR 87-A-7, 1988. Google Scholar[37] Hrishikeshavan V., Humbert J. S. and Chopra I., “Gramian Analysis of a Shrouded Rotor Micro Air Vehicle in Hover,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 5, 2014, pp. 1684–1691. doi:https://doi.org/10.2514/1.G000066 LinkGoogle Scholar[38] Bousman W. G. and Norman T., “Assessment of Predictive Capability of Aeromechanics Methods,” Journal of the American Helicopter Society, Vol. 55, No. 1, 2010, Paper 12001. doi:https://doi.org/10.4050/JAHS.55.012001 CrossrefGoogle Scholar Previous article FiguresReferencesRelatedDetailsCited bySystem Identification Approach for eVTOL Aircraft Demonstrated Using Simulated Flight DataBenjamin M. Simmons 1 February 2023 | Journal of Aircraft, Vol. 0, No. 0Kalman filter identification method for micro-vibration transfer paths of satellites6 December 2021 | Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 236, No. 11Flight Dynamics and Control of an Unmanned Helicopter with Underslung Double PendulumKuldeep K. Dhiman, Abhishek and Mangal Kotharic18 January 2022 | Journal of Aircraft, Vol. 59, No. 1 What's Popular Volume 56, Number 3May 2019Special Section on Second Sonic Boom Prediction Workshop CrossmarkInformationCopyright © 2019 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3868 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAircraft Components and StructureAircraft ControlAircraft DesignAircraft Flight Control SystemAircraft Operations and TechnologyAircraft Stability and ControlAircraft Wing DesignAircraftsFlight Control SurfacesFlight RecorderFlight TrainingHelicopter DynamicsHelicoptersRotorcraftsUnmanned Aerial Vehicle KeywordsHelicoptersProportional Integral DerivativeUnmanned HelicopterRotor BladesRotary WingAttitude and Heading Reference SystemFlight TestingAerodynamic Force VectorYawAngular MotionAcknowledgmentThe authors gratefully acknowledge the funding for autonomous helicopter research from the Department of Science and Technology, India.PDF Received24 September 2018Accepted15 January 2019Published online4 March 2019" @default.
- W2920502473 created "2019-03-11" @default.
- W2920502473 creator A5017683062 @default.
- W2920502473 creator A5052821698 @default.
- W2920502473 creator A5083763019 @default.
- W2920502473 date "2019-05-01" @default.
- W2920502473 modified "2023-10-18" @default.
- W2920502473 title "Time-Domain System Identification of Helicopters Using Nonlinear Acceleration and Jerk Prediction Model" @default.
- W2920502473 cites W1973834583 @default.
- W2920502473 cites W1978150223 @default.
- W2920502473 cites W1984193447 @default.
- W2920502473 cites W1987140863 @default.
- W2920502473 cites W1991593026 @default.
- W2920502473 cites W1992639497 @default.
- W2920502473 cites W1994085790 @default.
- W2920502473 cites W2000564230 @default.
- W2920502473 cites W2015507210 @default.
- W2920502473 cites W2048334323 @default.
- W2920502473 cites W2052738500 @default.
- W2920502473 cites W2064583605 @default.
- W2920502473 cites W2075773492 @default.
- W2920502473 cites W2099052061 @default.
- W2920502473 cites W2110998642 @default.
- W2920502473 cites W2116984550 @default.
- W2920502473 cites W2144406727 @default.
- W2920502473 cites W2152214986 @default.
- W2920502473 cites W2159052174 @default.
- W2920502473 cites W2330274555 @default.
- W2920502473 cites W246617311 @default.
- W2920502473 cites W2498803165 @default.
- W2920502473 cites W3173444807 @default.
- W2920502473 cites W3176886278 @default.
- W2920502473 doi "https://doi.org/10.2514/1.c035273" @default.
- W2920502473 hasPublicationYear "2019" @default.
- W2920502473 type Work @default.
- W2920502473 sameAs 2920502473 @default.
- W2920502473 citedByCount "3" @default.
- W2920502473 countsByYear W29205024732021 @default.
- W2920502473 countsByYear W29205024732022 @default.
- W2920502473 countsByYear W29205024732023 @default.
- W2920502473 crossrefType "journal-article" @default.
- W2920502473 hasAuthorship W2920502473A5017683062 @default.
- W2920502473 hasAuthorship W2920502473A5052821698 @default.
- W2920502473 hasAuthorship W2920502473A5083763019 @default.
- W2920502473 hasConcept C103824480 @default.
- W2920502473 hasConcept C116834253 @default.
- W2920502473 hasConcept C117896860 @default.
- W2920502473 hasConcept C119247159 @default.
- W2920502473 hasConcept C121332964 @default.
- W2920502473 hasConcept C127413603 @default.
- W2920502473 hasConcept C146978453 @default.
- W2920502473 hasConcept C154945302 @default.
- W2920502473 hasConcept C158622935 @default.
- W2920502473 hasConcept C181605269 @default.
- W2920502473 hasConcept C2775924081 @default.
- W2920502473 hasConcept C2984755018 @default.
- W2920502473 hasConcept C31972630 @default.
- W2920502473 hasConcept C41008148 @default.
- W2920502473 hasConcept C47446073 @default.
- W2920502473 hasConcept C59822182 @default.
- W2920502473 hasConcept C62520636 @default.
- W2920502473 hasConcept C67186912 @default.
- W2920502473 hasConcept C74650414 @default.
- W2920502473 hasConcept C77088390 @default.
- W2920502473 hasConcept C86803240 @default.
- W2920502473 hasConceptScore W2920502473C103824480 @default.
- W2920502473 hasConceptScore W2920502473C116834253 @default.
- W2920502473 hasConceptScore W2920502473C117896860 @default.
- W2920502473 hasConceptScore W2920502473C119247159 @default.
- W2920502473 hasConceptScore W2920502473C121332964 @default.
- W2920502473 hasConceptScore W2920502473C127413603 @default.
- W2920502473 hasConceptScore W2920502473C146978453 @default.
- W2920502473 hasConceptScore W2920502473C154945302 @default.
- W2920502473 hasConceptScore W2920502473C158622935 @default.
- W2920502473 hasConceptScore W2920502473C181605269 @default.
- W2920502473 hasConceptScore W2920502473C2775924081 @default.
- W2920502473 hasConceptScore W2920502473C2984755018 @default.
- W2920502473 hasConceptScore W2920502473C31972630 @default.
- W2920502473 hasConceptScore W2920502473C41008148 @default.
- W2920502473 hasConceptScore W2920502473C47446073 @default.
- W2920502473 hasConceptScore W2920502473C59822182 @default.
- W2920502473 hasConceptScore W2920502473C62520636 @default.
- W2920502473 hasConceptScore W2920502473C67186912 @default.
- W2920502473 hasConceptScore W2920502473C74650414 @default.
- W2920502473 hasConceptScore W2920502473C77088390 @default.
- W2920502473 hasConceptScore W2920502473C86803240 @default.
- W2920502473 hasIssue "3" @default.
- W2920502473 hasLocation W29205024731 @default.
- W2920502473 hasOpenAccess W2920502473 @default.
- W2920502473 hasPrimaryLocation W29205024731 @default.
- W2920502473 hasRelatedWork W2022098220 @default.
- W2920502473 hasRelatedWork W2034858236 @default.
- W2920502473 hasRelatedWork W2036212684 @default.
- W2920502473 hasRelatedWork W2152282424 @default.
- W2920502473 hasRelatedWork W2317035938 @default.
- W2920502473 hasRelatedWork W2360675219 @default.
- W2920502473 hasRelatedWork W2699943609 @default.
- W2920502473 hasRelatedWork W2786435794 @default.