Matches in SemOpenAlex for { <https://semopenalex.org/work/W2920595838> ?p ?o ?g. }
- W2920595838 endingPage "83" @default.
- W2920595838 startingPage "64" @default.
- W2920595838 abstract "In the frameworks of immersed boundary method (IBM) and finite volume method (FVM), an implicit heat flux correction-based IB-FVM is proposed for thermal flows with Neumann boundary conditions. With the use of a fractional-step technique, the preconditioned Navier–Stokes (N–S) equations are solved by the FVM to obtain the intermediate solution in the prediction step and the heat flux is corrected by enforcing the Neumann condition in the correction step. Different from existing IBMs, the cell face centers are defined as the Eulerian points due to the heat flux computation at each face in the FVM. The Neumann condition is implemented in such a way that the interpolated temperature gradient is equal to the specified boundary value at the same point when the corrected gradient field is interpolated from the face centers to the Lagrangian points. To achieve an implicit algorithm, the temperature derivative corrections at the Lagrangian points are set as unknowns and a system of algebraic equations is established by constructing hybrid thin-plate splines (TPS) interpolation/delta function distribution. In the derivative interpolation process, the much more accurate TPS is introduced because the use of cosine delta function yields a less accurate solution. After the distribution process, the heat flux correction of a fluid cell is evaluated by using the solved temperature derivative corrections at the face centers, but that of a solid cell is calculated by using their additive inverses to supplement the same amount of heat flux into the solid domain as that flowing into the fluid domain across the boundary. Finally, the heat flux of a cell is corrected by adding the correction to the intermediate value and the corrected heat flux is utilized to solve the N–S equations in the prediction step. As compared with the available implicit IBMs for Neumann conditions, the present method avoids the introduction of auxiliary layers of Lagrangian points as well as the approximate conversion from the Neumann to Dirichlet condition and thus is suitable for an arbitrary geometry. The proposed method is verified by simulating several benchmark thermal flows with Neumann conditions, the natural convection in an annulus and the steady or unsteady forced convection over a stationary or oscillating cylinder. All the computed results agree well with the literature data." @default.
- W2920595838 created "2019-03-11" @default.
- W2920595838 creator A5003642180 @default.
- W2920595838 creator A5031172216 @default.
- W2920595838 creator A5040209902 @default.
- W2920595838 creator A5074828488 @default.
- W2920595838 creator A5087312191 @default.
- W2920595838 date "2019-06-01" @default.
- W2920595838 modified "2023-10-17" @default.
- W2920595838 title "Implicit heat flux correction-based immersed boundary-finite volume method for thermal flows with Neumann boundary conditions" @default.
- W2920595838 cites W1972478448 @default.
- W2920595838 cites W1973092800 @default.
- W2920595838 cites W1985181829 @default.
- W2920595838 cites W1988440139 @default.
- W2920595838 cites W1989352725 @default.
- W2920595838 cites W1994918522 @default.
- W2920595838 cites W1997815093 @default.
- W2920595838 cites W2012007026 @default.
- W2920595838 cites W2012026572 @default.
- W2920595838 cites W2019667677 @default.
- W2920595838 cites W2020890537 @default.
- W2920595838 cites W2030325934 @default.
- W2920595838 cites W2030917176 @default.
- W2920595838 cites W2035880798 @default.
- W2920595838 cites W2050246192 @default.
- W2920595838 cites W2055239400 @default.
- W2920595838 cites W2062641377 @default.
- W2920595838 cites W2063341267 @default.
- W2920595838 cites W2066222663 @default.
- W2920595838 cites W2068620214 @default.
- W2920595838 cites W2074742209 @default.
- W2920595838 cites W2075646290 @default.
- W2920595838 cites W2081104114 @default.
- W2920595838 cites W2083166418 @default.
- W2920595838 cites W2084131634 @default.
- W2920595838 cites W2088732779 @default.
- W2920595838 cites W2088802448 @default.
- W2920595838 cites W2090271834 @default.
- W2920595838 cites W2095006601 @default.
- W2920595838 cites W2095445759 @default.
- W2920595838 cites W2102977569 @default.
- W2920595838 cites W2119950184 @default.
- W2920595838 cites W2133758418 @default.
- W2920595838 cites W2151254558 @default.
- W2920595838 cites W2159268266 @default.
- W2920595838 cites W2183024191 @default.
- W2920595838 cites W2414329952 @default.
- W2920595838 cites W2548514185 @default.
- W2920595838 cites W2727162126 @default.
- W2920595838 cites W4234685109 @default.
- W2920595838 cites W4376596434 @default.
- W2920595838 doi "https://doi.org/10.1016/j.jcp.2019.02.016" @default.
- W2920595838 hasPublicationYear "2019" @default.
- W2920595838 type Work @default.
- W2920595838 sameAs 2920595838 @default.
- W2920595838 citedByCount "13" @default.
- W2920595838 countsByYear W29205958382019 @default.
- W2920595838 countsByYear W29205958382020 @default.
- W2920595838 countsByYear W29205958382021 @default.
- W2920595838 countsByYear W29205958382022 @default.
- W2920595838 countsByYear W29205958382023 @default.
- W2920595838 crossrefType "journal-article" @default.
- W2920595838 hasAuthorship W2920595838A5003642180 @default.
- W2920595838 hasAuthorship W2920595838A5031172216 @default.
- W2920595838 hasAuthorship W2920595838A5040209902 @default.
- W2920595838 hasAuthorship W2920595838A5074828488 @default.
- W2920595838 hasAuthorship W2920595838A5087312191 @default.
- W2920595838 hasConcept C104114177 @default.
- W2920595838 hasConcept C121332964 @default.
- W2920595838 hasConcept C134306372 @default.
- W2920595838 hasConcept C137800194 @default.
- W2920595838 hasConcept C159188206 @default.
- W2920595838 hasConcept C163681178 @default.
- W2920595838 hasConcept C182310444 @default.
- W2920595838 hasConcept C28826006 @default.
- W2920595838 hasConcept C33923547 @default.
- W2920595838 hasConcept C50478463 @default.
- W2920595838 hasConcept C50517652 @default.
- W2920595838 hasConcept C57879066 @default.
- W2920595838 hasConcept C62354387 @default.
- W2920595838 hasConcept C74650414 @default.
- W2920595838 hasConceptScore W2920595838C104114177 @default.
- W2920595838 hasConceptScore W2920595838C121332964 @default.
- W2920595838 hasConceptScore W2920595838C134306372 @default.
- W2920595838 hasConceptScore W2920595838C137800194 @default.
- W2920595838 hasConceptScore W2920595838C159188206 @default.
- W2920595838 hasConceptScore W2920595838C163681178 @default.
- W2920595838 hasConceptScore W2920595838C182310444 @default.
- W2920595838 hasConceptScore W2920595838C28826006 @default.
- W2920595838 hasConceptScore W2920595838C33923547 @default.
- W2920595838 hasConceptScore W2920595838C50478463 @default.
- W2920595838 hasConceptScore W2920595838C50517652 @default.
- W2920595838 hasConceptScore W2920595838C57879066 @default.
- W2920595838 hasConceptScore W2920595838C62354387 @default.
- W2920595838 hasConceptScore W2920595838C74650414 @default.
- W2920595838 hasFunder F4320321001 @default.
- W2920595838 hasLocation W29205958381 @default.
- W2920595838 hasOpenAccess W2920595838 @default.