Matches in SemOpenAlex for { <https://semopenalex.org/work/W2920609618> ?p ?o ?g. }
- W2920609618 endingPage "41" @default.
- W2920609618 startingPage "35" @default.
- W2920609618 abstract "Summary Machine learning (ML) encompasses statistical methods that learn to identify patterns in complex datasets. Here, I review application areas in plant–pathogen interactions that have recently benefited from ML, such as disease monitoring, the discovery of gene regulatory networks, genomic selection for disease resistance and prediction of pathogen effectors. However, achieving robust performance from ML is not trivial and requires knowledge of both the methodology and the biology. I discuss common pitfalls and challenges in using ML approaches. Finally, I highlight future opportunities for ML as a tool for dissecting plant–pathogen interactions using high‐throughput data, for example, through integration of diverse data sources and the analysis with higher resolution, such as from individual cells or on elaborate spatial and temporal scales." @default.
- W2920609618 created "2019-03-11" @default.
- W2920609618 creator A5054002112 @default.
- W2920609618 date "2019-03-26" @default.
- W2920609618 modified "2023-10-16" @default.
- W2920609618 title "Machine learning in plant–pathogen interactions: empowering biological predictions from field scale to genome scale" @default.
- W2920609618 cites W1505191356 @default.
- W2920609618 cites W1534477342 @default.
- W2920609618 cites W1981091069 @default.
- W2920609618 cites W1996020380 @default.
- W2920609618 cites W2008899936 @default.
- W2920609618 cites W2014408679 @default.
- W2920609618 cites W2018334443 @default.
- W2920609618 cites W2028606616 @default.
- W2920609618 cites W2032510388 @default.
- W2920609618 cites W2037305710 @default.
- W2920609618 cites W2050541807 @default.
- W2920609618 cites W2055963101 @default.
- W2920609618 cites W2068532894 @default.
- W2920609618 cites W2085102470 @default.
- W2920609618 cites W2094201044 @default.
- W2920609618 cites W2098071274 @default.
- W2920609618 cites W2103959917 @default.
- W2920609618 cites W2112936375 @default.
- W2920609618 cites W2114980338 @default.
- W2920609618 cites W2140991832 @default.
- W2920609618 cites W2161336914 @default.
- W2920609618 cites W2213426519 @default.
- W2920609618 cites W2241764905 @default.
- W2920609618 cites W2298991749 @default.
- W2920609618 cites W2313855480 @default.
- W2920609618 cites W2413469350 @default.
- W2920609618 cites W2478493250 @default.
- W2920609618 cites W2502949459 @default.
- W2920609618 cites W2576460391 @default.
- W2920609618 cites W2750734368 @default.
- W2920609618 cites W2753733339 @default.
- W2920609618 cites W2760544538 @default.
- W2920609618 cites W2761176843 @default.
- W2920609618 cites W2776525063 @default.
- W2920609618 cites W2787339353 @default.
- W2920609618 cites W2789255992 @default.
- W2920609618 cites W2790635775 @default.
- W2920609618 cites W2790865507 @default.
- W2920609618 cites W2793166416 @default.
- W2920609618 cites W2796468311 @default.
- W2920609618 cites W2800574443 @default.
- W2920609618 cites W2887902433 @default.
- W2920609618 cites W2901218091 @default.
- W2920609618 cites W2902990089 @default.
- W2920609618 cites W2942849560 @default.
- W2920609618 cites W2949819099 @default.
- W2920609618 doi "https://doi.org/10.1111/nph.15771" @default.
- W2920609618 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30834534" @default.
- W2920609618 hasPublicationYear "2019" @default.
- W2920609618 type Work @default.
- W2920609618 sameAs 2920609618 @default.
- W2920609618 citedByCount "44" @default.
- W2920609618 countsByYear W29206096182019 @default.
- W2920609618 countsByYear W29206096182020 @default.
- W2920609618 countsByYear W29206096182021 @default.
- W2920609618 countsByYear W29206096182022 @default.
- W2920609618 countsByYear W29206096182023 @default.
- W2920609618 crossrefType "journal-article" @default.
- W2920609618 hasAuthorship W2920609618A5054002112 @default.
- W2920609618 hasBestOaLocation W29206096181 @default.
- W2920609618 hasConcept C104317684 @default.
- W2920609618 hasConcept C119857082 @default.
- W2920609618 hasConcept C141231307 @default.
- W2920609618 hasConcept C154945302 @default.
- W2920609618 hasConcept C202444582 @default.
- W2920609618 hasConcept C205649164 @default.
- W2920609618 hasConcept C2522767166 @default.
- W2920609618 hasConcept C2776460866 @default.
- W2920609618 hasConcept C2778755073 @default.
- W2920609618 hasConcept C33923547 @default.
- W2920609618 hasConcept C41008148 @default.
- W2920609618 hasConcept C51785407 @default.
- W2920609618 hasConcept C54355233 @default.
- W2920609618 hasConcept C58640448 @default.
- W2920609618 hasConcept C70721500 @default.
- W2920609618 hasConcept C81917197 @default.
- W2920609618 hasConcept C86803240 @default.
- W2920609618 hasConcept C95444343 @default.
- W2920609618 hasConcept C9652623 @default.
- W2920609618 hasConceptScore W2920609618C104317684 @default.
- W2920609618 hasConceptScore W2920609618C119857082 @default.
- W2920609618 hasConceptScore W2920609618C141231307 @default.
- W2920609618 hasConceptScore W2920609618C154945302 @default.
- W2920609618 hasConceptScore W2920609618C202444582 @default.
- W2920609618 hasConceptScore W2920609618C205649164 @default.
- W2920609618 hasConceptScore W2920609618C2522767166 @default.
- W2920609618 hasConceptScore W2920609618C2776460866 @default.
- W2920609618 hasConceptScore W2920609618C2778755073 @default.
- W2920609618 hasConceptScore W2920609618C33923547 @default.
- W2920609618 hasConceptScore W2920609618C41008148 @default.
- W2920609618 hasConceptScore W2920609618C51785407 @default.
- W2920609618 hasConceptScore W2920609618C54355233 @default.