Matches in SemOpenAlex for { <https://semopenalex.org/work/W2920732287> ?p ?o ?g. }
- W2920732287 abstract "Identifying the relations that connect words is an important step towards understanding human languages and is useful for various NLP tasks such as knowledge base completion and analogical reasoning. Simple unsupervised operators such as vector offset between two-word embeddings have shown to recover some specific relationships between those words, if any. Despite this, how to accurately learn generic relation representations from word representations remains unclear. We model relation representation as a supervised learning problem and learn parametrised operators that map pre-trained word embeddings to relation representations. We propose a method for learning relation representations using a feed-forward neural network that performs relation prediction. Our evaluations on two benchmark datasets reveal that the penultimate layer of the trained neural network-based relational predictor acts as a good representation for the relations between words." @default.
- W2920732287 created "2019-03-11" @default.
- W2920732287 creator A5073503574 @default.
- W2920732287 creator A5089674336 @default.
- W2920732287 date "2019-05-04" @default.
- W2920732287 modified "2023-09-23" @default.
- W2920732287 title "Learning Relation Representations from Word Representations" @default.
- W2920732287 cites W1533230146 @default.
- W2920732287 cites W1583820951 @default.
- W2920732287 cites W1615991656 @default.
- W2920732287 cites W1654905138 @default.
- W2920732287 cites W1662133657 @default.
- W2920732287 cites W1958547877 @default.
- W2920732287 cites W1980287119 @default.
- W2920732287 cites W2038227658 @default.
- W2920732287 cites W2053301011 @default.
- W2920732287 cites W2059031628 @default.
- W2920732287 cites W2098801107 @default.
- W2920732287 cites W2102515914 @default.
- W2920732287 cites W2127426251 @default.
- W2920732287 cites W2127795553 @default.
- W2920732287 cites W2141599568 @default.
- W2920732287 cites W2142086811 @default.
- W2920732287 cites W2147152072 @default.
- W2920732287 cites W2168565044 @default.
- W2920732287 cites W2201979157 @default.
- W2920732287 cites W2250189634 @default.
- W2920732287 cites W2250539671 @default.
- W2920732287 cites W2251176673 @default.
- W2920732287 cites W2296076036 @default.
- W2920732287 cites W2460442863 @default.
- W2920732287 cites W2572487292 @default.
- W2920732287 cites W2604643118 @default.
- W2920732287 cites W2613264999 @default.
- W2920732287 cites W2739638526 @default.
- W2920732287 cites W2740026090 @default.
- W2920732287 cites W2751143192 @default.
- W2920732287 cites W2751627669 @default.
- W2920732287 cites W2758458197 @default.
- W2920732287 cites W2803176955 @default.
- W2920732287 cites W2865541675 @default.
- W2920732287 cites W2962724755 @default.
- W2920732287 cites W2963176474 @default.
- W2920732287 cites W2963426755 @default.
- W2920732287 cites W2963432357 @default.
- W2920732287 cites W3154772965 @default.
- W2920732287 hasPublicationYear "2019" @default.
- W2920732287 type Work @default.
- W2920732287 sameAs 2920732287 @default.
- W2920732287 citedByCount "0" @default.
- W2920732287 crossrefType "proceedings-article" @default.
- W2920732287 hasAuthorship W2920732287A5073503574 @default.
- W2920732287 hasAuthorship W2920732287A5089674336 @default.
- W2920732287 hasConcept C111472728 @default.
- W2920732287 hasConcept C119857082 @default.
- W2920732287 hasConcept C124101348 @default.
- W2920732287 hasConcept C13280743 @default.
- W2920732287 hasConcept C138885662 @default.
- W2920732287 hasConcept C154945302 @default.
- W2920732287 hasConcept C175291020 @default.
- W2920732287 hasConcept C17744445 @default.
- W2920732287 hasConcept C177877439 @default.
- W2920732287 hasConcept C185798385 @default.
- W2920732287 hasConcept C199360897 @default.
- W2920732287 hasConcept C199539241 @default.
- W2920732287 hasConcept C204321447 @default.
- W2920732287 hasConcept C205649164 @default.
- W2920732287 hasConcept C23123220 @default.
- W2920732287 hasConcept C2524010 @default.
- W2920732287 hasConcept C25343380 @default.
- W2920732287 hasConcept C2776359362 @default.
- W2920732287 hasConcept C2780586882 @default.
- W2920732287 hasConcept C33923547 @default.
- W2920732287 hasConcept C41008148 @default.
- W2920732287 hasConcept C50644808 @default.
- W2920732287 hasConcept C5655090 @default.
- W2920732287 hasConcept C90805587 @default.
- W2920732287 hasConcept C94625758 @default.
- W2920732287 hasConceptScore W2920732287C111472728 @default.
- W2920732287 hasConceptScore W2920732287C119857082 @default.
- W2920732287 hasConceptScore W2920732287C124101348 @default.
- W2920732287 hasConceptScore W2920732287C13280743 @default.
- W2920732287 hasConceptScore W2920732287C138885662 @default.
- W2920732287 hasConceptScore W2920732287C154945302 @default.
- W2920732287 hasConceptScore W2920732287C175291020 @default.
- W2920732287 hasConceptScore W2920732287C17744445 @default.
- W2920732287 hasConceptScore W2920732287C177877439 @default.
- W2920732287 hasConceptScore W2920732287C185798385 @default.
- W2920732287 hasConceptScore W2920732287C199360897 @default.
- W2920732287 hasConceptScore W2920732287C199539241 @default.
- W2920732287 hasConceptScore W2920732287C204321447 @default.
- W2920732287 hasConceptScore W2920732287C205649164 @default.
- W2920732287 hasConceptScore W2920732287C23123220 @default.
- W2920732287 hasConceptScore W2920732287C2524010 @default.
- W2920732287 hasConceptScore W2920732287C25343380 @default.
- W2920732287 hasConceptScore W2920732287C2776359362 @default.
- W2920732287 hasConceptScore W2920732287C2780586882 @default.
- W2920732287 hasConceptScore W2920732287C33923547 @default.
- W2920732287 hasConceptScore W2920732287C41008148 @default.
- W2920732287 hasConceptScore W2920732287C50644808 @default.