Matches in SemOpenAlex for { <https://semopenalex.org/work/W2920782008> ?p ?o ?g. }
- W2920782008 abstract "Benefiting from big data, powerful computation and new algorithmic techniques, we have been witnessing the renaissance of deep learning, particularly the combination of natural language processing (NLP) and deep neural networks. The advent of electronic medical records (EMRs) has not only changed the format of medical records but also helped users to obtain information faster. However, there are many challenges regarding researching directly using Chinese EMRs, such as low quality, huge quantity, imbalance, semi-structure and non-structure, particularly the high density of the Chinese language compared with English. Therefore, effective word segmentation, word representation and model architecture are the core technologies in the literature on Chinese EMRs. In this paper, we propose a deep learning framework to study intelligent diagnosis using Chinese EMR data, which incorporates a convolutional neural network (CNN) into an EMR classification application. The novelty of this paper is reflected in the following: (1) We construct a pediatric medical dictionary based on Chinese EMRs. (2) Word2vec adopted in word embedding is used to achieve the semantic description of the content of Chinese EMRs. (3) A fine-tuning CNN model is constructed to feed the pediatric diagnosis with Chinese EMR data. Our results on real-world pediatric Chinese EMRs demonstrate that the average accuracy and F1-score of the CNN models are up to 81%, which indicates the effectiveness of the CNN model for the classification of EMRs. Particularly, a fine-tuning one-layer CNN performs best among all CNNs, recurrent neural network (RNN) (long short-term memory, gated recurrent unit) and CNN-RNN models, and the average accuracy and F1-score are both up to 83%. The CNN framework that includes word segmentation, word embedding and model training can serve as an intelligent auxiliary diagnosis tool for pediatricians. Particularly, a fine-tuning one-layer CNN performs well, which indicates that word order does not appear to have a useful effect on our Chinese EMRs." @default.
- W2920782008 created "2019-03-11" @default.
- W2920782008 creator A5004062770 @default.
- W2920782008 creator A5041840086 @default.
- W2920782008 creator A5043941427 @default.
- W2920782008 creator A5045413149 @default.
- W2920782008 creator A5045582246 @default.
- W2920782008 creator A5058495823 @default.
- W2920782008 date "2019-02-01" @default.
- W2920782008 modified "2023-10-17" @default.
- W2920782008 title "Intelligent diagnosis with Chinese electronic medical records based on convolutional neural networks" @default.
- W2920782008 cites W1662133657 @default.
- W2920782008 cites W1666984270 @default.
- W2920782008 cites W1832693441 @default.
- W2920782008 cites W1890275775 @default.
- W2920782008 cites W2051743300 @default.
- W2920782008 cites W2056102627 @default.
- W2920782008 cites W2062118960 @default.
- W2920782008 cites W2069960057 @default.
- W2920782008 cites W2077566853 @default.
- W2920782008 cites W2109056977 @default.
- W2920782008 cites W2112796928 @default.
- W2920782008 cites W2120615054 @default.
- W2920782008 cites W2152399331 @default.
- W2920782008 cites W2155857546 @default.
- W2920782008 cites W2155893237 @default.
- W2920782008 cites W2171928131 @default.
- W2920782008 cites W2250999640 @default.
- W2920782008 cites W2251143283 @default.
- W2920782008 cites W2427312199 @default.
- W2920782008 cites W2551333235 @default.
- W2920782008 cites W2772350809 @default.
- W2920782008 cites W2884001105 @default.
- W2920782008 cites W2985382943 @default.
- W2920782008 cites W3098949126 @default.
- W2920782008 doi "https://doi.org/10.1186/s12859-019-2617-8" @default.
- W2920782008 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6359854" @default.
- W2920782008 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30709336" @default.
- W2920782008 hasPublicationYear "2019" @default.
- W2920782008 type Work @default.
- W2920782008 sameAs 2920782008 @default.
- W2920782008 citedByCount "25" @default.
- W2920782008 countsByYear W29207820082020 @default.
- W2920782008 countsByYear W29207820082021 @default.
- W2920782008 countsByYear W29207820082022 @default.
- W2920782008 countsByYear W29207820082023 @default.
- W2920782008 crossrefType "journal-article" @default.
- W2920782008 hasAuthorship W2920782008A5004062770 @default.
- W2920782008 hasAuthorship W2920782008A5041840086 @default.
- W2920782008 hasAuthorship W2920782008A5043941427 @default.
- W2920782008 hasAuthorship W2920782008A5045413149 @default.
- W2920782008 hasAuthorship W2920782008A5045582246 @default.
- W2920782008 hasAuthorship W2920782008A5058495823 @default.
- W2920782008 hasBestOaLocation W29207820081 @default.
- W2920782008 hasConcept C108583219 @default.
- W2920782008 hasConcept C119857082 @default.
- W2920782008 hasConcept C147168706 @default.
- W2920782008 hasConcept C154945302 @default.
- W2920782008 hasConcept C204321447 @default.
- W2920782008 hasConcept C2776461190 @default.
- W2920782008 hasConcept C2777462759 @default.
- W2920782008 hasConcept C41008148 @default.
- W2920782008 hasConcept C41608201 @default.
- W2920782008 hasConcept C50644808 @default.
- W2920782008 hasConcept C81363708 @default.
- W2920782008 hasConceptScore W2920782008C108583219 @default.
- W2920782008 hasConceptScore W2920782008C119857082 @default.
- W2920782008 hasConceptScore W2920782008C147168706 @default.
- W2920782008 hasConceptScore W2920782008C154945302 @default.
- W2920782008 hasConceptScore W2920782008C204321447 @default.
- W2920782008 hasConceptScore W2920782008C2776461190 @default.
- W2920782008 hasConceptScore W2920782008C2777462759 @default.
- W2920782008 hasConceptScore W2920782008C41008148 @default.
- W2920782008 hasConceptScore W2920782008C41608201 @default.
- W2920782008 hasConceptScore W2920782008C50644808 @default.
- W2920782008 hasConceptScore W2920782008C81363708 @default.
- W2920782008 hasFunder F4320321001 @default.
- W2920782008 hasFunder F4320321878 @default.
- W2920782008 hasIssue "1" @default.
- W2920782008 hasLocation W29207820081 @default.
- W2920782008 hasLocation W29207820082 @default.
- W2920782008 hasLocation W29207820083 @default.
- W2920782008 hasLocation W29207820084 @default.
- W2920782008 hasLocation W29207820085 @default.
- W2920782008 hasOpenAccess W2920782008 @default.
- W2920782008 hasPrimaryLocation W29207820081 @default.
- W2920782008 hasRelatedWork W2798009317 @default.
- W2920782008 hasRelatedWork W2946409105 @default.
- W2920782008 hasRelatedWork W2985392712 @default.
- W2920782008 hasRelatedWork W3133567596 @default.
- W2920782008 hasRelatedWork W3133861977 @default.
- W2920782008 hasRelatedWork W3152932816 @default.
- W2920782008 hasRelatedWork W3193565141 @default.
- W2920782008 hasRelatedWork W4226493464 @default.
- W2920782008 hasRelatedWork W4312417841 @default.
- W2920782008 hasRelatedWork W4382201653 @default.
- W2920782008 hasVolume "20" @default.
- W2920782008 isParatext "false" @default.
- W2920782008 isRetracted "false" @default.
- W2920782008 magId "2920782008" @default.