Matches in SemOpenAlex for { <https://semopenalex.org/work/W2920793549> ?p ?o ?g. }
- W2920793549 endingPage "442" @default.
- W2920793549 startingPage "432" @default.
- W2920793549 abstract "To address the unprecedented increase in China's CO2 emissions over the past decades, the Chinese government has implemented many policies that are aimed at reducing carbon intensity. Applying the LMDI method, this study conducts a decomposition analysis of the drivers influencing China's CO2 emissions by examining the details of 41 industry sub-sectors during 2000-2016; further, it predicts the carbon intensity reduction potential in 2020 and 2030 based on various official policies and documents. We conclude that energy intensity was the primary indicator that reduced CO2 emissions, whereas the effects of carbon intensity, energy mix, and industrial structure were relatively minor. During the study period, the effect of industrial structure optimization on the change in CO2 emissions shifted from the promotion of emissions to their suppression, with the inhibiting influence becoming greater over time. Finally, scenario analysis indicated that CO2 intensity would decrease 21.5% by 2020 compared to the 2015 level, and the reduction target of 65% would be achieved fully in 2030 in the outlook scenario. Energy intensity is the largest contributor to the decrease in CO2 emissions during 2016-2020, whereas industrial structure optimization shows the greatest potential for environmental improvement during 2020-2030. This paper concludes that more stringent policies are essential to reducing CO2 emissions in the near future." @default.
- W2920793549 created "2019-03-11" @default.
- W2920793549 creator A5047102578 @default.
- W2920793549 creator A5056457307 @default.
- W2920793549 creator A5057203555 @default.
- W2920793549 creator A5070080394 @default.
- W2920793549 date "2019-06-01" @default.
- W2920793549 modified "2023-10-17" @default.
- W2920793549 title "Decomposition analysis of China's CO2 emissions (2000–2016) and scenario analysis of its carbon intensity targets in 2020 and 2030" @default.
- W2920793549 cites W1522204718 @default.
- W2920793549 cites W1617539515 @default.
- W2920793549 cites W1979790999 @default.
- W2920793549 cites W1985785857 @default.
- W2920793549 cites W1988331172 @default.
- W2920793549 cites W1990310464 @default.
- W2920793549 cites W2003315265 @default.
- W2920793549 cites W2006399357 @default.
- W2920793549 cites W2007726768 @default.
- W2920793549 cites W2009044071 @default.
- W2920793549 cites W2009324746 @default.
- W2920793549 cites W2016219687 @default.
- W2920793549 cites W2021281175 @default.
- W2920793549 cites W2042911646 @default.
- W2920793549 cites W2044447150 @default.
- W2920793549 cites W2046703135 @default.
- W2920793549 cites W2067675377 @default.
- W2920793549 cites W2067965476 @default.
- W2920793549 cites W2080600063 @default.
- W2920793549 cites W2081052064 @default.
- W2920793549 cites W2101394149 @default.
- W2920793549 cites W2114046223 @default.
- W2920793549 cites W2190698000 @default.
- W2920793549 cites W2191365824 @default.
- W2920793549 cites W2275424541 @default.
- W2920793549 cites W2281206590 @default.
- W2920793549 cites W2306160956 @default.
- W2920793549 cites W2320134763 @default.
- W2920793549 cites W2344877473 @default.
- W2920793549 cites W2485089087 @default.
- W2920793549 cites W2520963744 @default.
- W2920793549 cites W2521242913 @default.
- W2920793549 cites W2528938900 @default.
- W2920793549 cites W2565967721 @default.
- W2920793549 cites W2581504233 @default.
- W2920793549 cites W2596205869 @default.
- W2920793549 cites W2604257432 @default.
- W2920793549 cites W2605044621 @default.
- W2920793549 cites W2606334531 @default.
- W2920793549 cites W2617142118 @default.
- W2920793549 cites W2727433114 @default.
- W2920793549 cites W2760766140 @default.
- W2920793549 cites W2761125196 @default.
- W2920793549 cites W2766240754 @default.
- W2920793549 cites W2792335742 @default.
- W2920793549 cites W2797455433 @default.
- W2920793549 cites W2801550310 @default.
- W2920793549 cites W2804953486 @default.
- W2920793549 cites W2810879755 @default.
- W2920793549 cites W2825497537 @default.
- W2920793549 cites W2888236033 @default.
- W2920793549 cites W2889201849 @default.
- W2920793549 cites W2892263695 @default.
- W2920793549 doi "https://doi.org/10.1016/j.scitotenv.2019.02.406" @default.
- W2920793549 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30852219" @default.
- W2920793549 hasPublicationYear "2019" @default.
- W2920793549 type Work @default.
- W2920793549 sameAs 2920793549 @default.
- W2920793549 citedByCount "110" @default.
- W2920793549 countsByYear W29207935492019 @default.
- W2920793549 countsByYear W29207935492020 @default.
- W2920793549 countsByYear W29207935492021 @default.
- W2920793549 countsByYear W29207935492022 @default.
- W2920793549 countsByYear W29207935492023 @default.
- W2920793549 crossrefType "journal-article" @default.
- W2920793549 hasAuthorship W2920793549A5047102578 @default.
- W2920793549 hasAuthorship W2920793549A5056457307 @default.
- W2920793549 hasAuthorship W2920793549A5057203555 @default.
- W2920793549 hasAuthorship W2920793549A5070080394 @default.
- W2920793549 hasConcept C10138342 @default.
- W2920793549 hasConcept C104779481 @default.
- W2920793549 hasConcept C11413529 @default.
- W2920793549 hasConcept C119599485 @default.
- W2920793549 hasConcept C121332964 @default.
- W2920793549 hasConcept C124681953 @default.
- W2920793549 hasConcept C127413603 @default.
- W2920793549 hasConcept C134560507 @default.
- W2920793549 hasConcept C136264566 @default.
- W2920793549 hasConcept C140205800 @default.
- W2920793549 hasConcept C144133560 @default.
- W2920793549 hasConcept C162324750 @default.
- W2920793549 hasConcept C169685871 @default.
- W2920793549 hasConcept C175605778 @default.
- W2920793549 hasConcept C17744445 @default.
- W2920793549 hasConcept C178790620 @default.
- W2920793549 hasConcept C185592680 @default.
- W2920793549 hasConcept C18785705 @default.
- W2920793549 hasConcept C18903297 @default.
- W2920793549 hasConcept C191935318 @default.