Matches in SemOpenAlex for { <https://semopenalex.org/work/W2920797498> ?p ?o ?g. }
- W2920797498 endingPage "448" @default.
- W2920797498 startingPage "435" @default.
- W2920797498 abstract "Abstract Groundwater is one of the most beneficial natural resources worldwide. The main aim of the present study is the mapping of groundwater potential of the Zhangjiamao area in China using two novel hybrid data mining techniques that involve the adaptive neuro-fuzzy inference system (ANFIS) ensembled with teaching-learning-based optimization (TLBO) and biogeography-based optimization (BBO). First, 93 spring locations were identified in the study area, which were randomly divided in the ratio of 70:30 to be used for building models and validation, respectively. A total of 16 spring affecting factors viz., slope aspect, altitude, slope angle, plan curvature, profile curvature, curvature, sediment transport index, stream power index, topographic wetness index, distance to roads, distance to rivers, rainfall, lithology, soil, NDVI, and land use/land cover, were used as input variables. The probability certainty factor (PCF) method was applied for the correlation analysis between spring occurrences and the affecting factors. Subsequently, the ANFIS-TLBO and ANFIS-BBO models were generated to produce groundwater spring potential maps (GSPMs). Finally, the GSPMs were evaluated by using the area under the receiver operating characteristic (AUROC). The results showed that the AUROC values for the ANFIS-TLBO model based on the training and validation datasets were 0.866 and 0.905, respectively. In contrast, the AUROC values for the ANFIS-BBO model based on the training and validation datasets were 0.861 and 0.887, respectively. The results of ANFIS-TLBO showed that 25.66% of the study area could be classified into the high and very high groundwater spring potential classes as compared to the ANFIS-BBO model (30.52%). The results of the present study can be useful for groundwater management." @default.
- W2920797498 created "2019-03-22" @default.
- W2920797498 creator A5006705342 @default.
- W2920797498 creator A5039122205 @default.
- W2920797498 creator A5056706783 @default.
- W2920797498 creator A5058653182 @default.
- W2920797498 creator A5083514118 @default.
- W2920797498 creator A5085862460 @default.
- W2920797498 date "2019-05-01" @default.
- W2920797498 modified "2023-10-17" @default.
- W2920797498 title "Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization" @default.
- W2920797498 cites W1057892209 @default.
- W2920797498 cites W1192997862 @default.
- W2920797498 cites W1200394947 @default.
- W2920797498 cites W165199097 @default.
- W2920797498 cites W1964997367 @default.
- W2920797498 cites W1965920041 @default.
- W2920797498 cites W1967399023 @default.
- W2920797498 cites W1968503008 @default.
- W2920797498 cites W1975074447 @default.
- W2920797498 cites W1984195935 @default.
- W2920797498 cites W1985288162 @default.
- W2920797498 cites W1999284878 @default.
- W2920797498 cites W2001422417 @default.
- W2920797498 cites W2005348436 @default.
- W2920797498 cites W2009435097 @default.
- W2920797498 cites W2012118327 @default.
- W2920797498 cites W2013341039 @default.
- W2920797498 cites W2019207321 @default.
- W2920797498 cites W2026294281 @default.
- W2920797498 cites W2030247974 @default.
- W2920797498 cites W2031820816 @default.
- W2920797498 cites W2042315239 @default.
- W2920797498 cites W2042951326 @default.
- W2920797498 cites W2043986240 @default.
- W2920797498 cites W2065600529 @default.
- W2920797498 cites W2067086056 @default.
- W2920797498 cites W2070271130 @default.
- W2920797498 cites W2080452154 @default.
- W2920797498 cites W2083202425 @default.
- W2920797498 cites W2098724638 @default.
- W2920797498 cites W2109982940 @default.
- W2920797498 cites W2133321814 @default.
- W2920797498 cites W2168081761 @default.
- W2920797498 cites W2208293910 @default.
- W2920797498 cites W2278830514 @default.
- W2920797498 cites W2337262701 @default.
- W2920797498 cites W2423094380 @default.
- W2920797498 cites W2529002379 @default.
- W2920797498 cites W2570489808 @default.
- W2920797498 cites W2587950680 @default.
- W2920797498 cites W2592063591 @default.
- W2920797498 cites W2600926735 @default.
- W2920797498 cites W2621028994 @default.
- W2920797498 cites W2754252800 @default.
- W2920797498 cites W2765742909 @default.
- W2920797498 cites W2769668329 @default.
- W2920797498 cites W2784075164 @default.
- W2920797498 cites W2790826728 @default.
- W2920797498 cites W2791328889 @default.
- W2920797498 cites W2797310831 @default.
- W2920797498 cites W2880239935 @default.
- W2920797498 cites W2887887128 @default.
- W2920797498 cites W2889135933 @default.
- W2920797498 cites W2890029039 @default.
- W2920797498 cites W2891625068 @default.
- W2920797498 cites W2892289985 @default.
- W2920797498 cites W2903721734 @default.
- W2920797498 doi "https://doi.org/10.1016/j.jhydrol.2019.03.013" @default.
- W2920797498 hasPublicationYear "2019" @default.
- W2920797498 type Work @default.
- W2920797498 sameAs 2920797498 @default.
- W2920797498 citedByCount "140" @default.
- W2920797498 countsByYear W29207974982019 @default.
- W2920797498 countsByYear W29207974982020 @default.
- W2920797498 countsByYear W29207974982021 @default.
- W2920797498 countsByYear W29207974982022 @default.
- W2920797498 countsByYear W29207974982023 @default.
- W2920797498 crossrefType "journal-article" @default.
- W2920797498 hasAuthorship W2920797498A5006705342 @default.
- W2920797498 hasAuthorship W2920797498A5039122205 @default.
- W2920797498 hasAuthorship W2920797498A5056706783 @default.
- W2920797498 hasAuthorship W2920797498A5058653182 @default.
- W2920797498 hasAuthorship W2920797498A5083514118 @default.
- W2920797498 hasAuthorship W2920797498A5085862460 @default.
- W2920797498 hasConcept C123575903 @default.
- W2920797498 hasConcept C127313418 @default.
- W2920797498 hasConcept C154945302 @default.
- W2920797498 hasConcept C186108316 @default.
- W2920797498 hasConcept C187320778 @default.
- W2920797498 hasConcept C18903297 @default.
- W2920797498 hasConcept C195975749 @default.
- W2920797498 hasConcept C39432304 @default.
- W2920797498 hasConcept C41008148 @default.
- W2920797498 hasConcept C58166 @default.
- W2920797498 hasConcept C76177295 @default.
- W2920797498 hasConcept C76886044 @default.
- W2920797498 hasConcept C86803240 @default.