Matches in SemOpenAlex for { <https://semopenalex.org/work/W2920805549> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2920805549 endingPage "34945" @default.
- W2920805549 startingPage "34938" @default.
- W2920805549 abstract "Different automated decision support systems based on artificial neural network (ANN) have been widely proposed for the detection of heart disease in previous studies. However, most of these techniques focus on the preprocessing of features only. In this paper, we focus on both, i.e., refinement of features and elimination of the problems posed by the predictive model, i.e., the problems of underfitting and overfitting. By avoiding the model from overfitting and underfitting, it can show good performance on both the datasets, i.e., training data and testing data. Inappropriate network configuration and irrelevant features often result in overfitting the training data. To eliminate irrelevant features, we propose to use χ <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> statistical model while the optimally configured deep neural network (DNN) is searched by using exhaustive search strategy. The strength of the proposed hybrid model named χ <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> -DNN is evaluated by comparing its performance with conventional ANN and DNN models, another state of the art machine learning models and previously reported methods for heart disease prediction. The proposed model achieves the prediction accuracy of 93.33%. The obtained results are promising compared to the previously reported methods. The findings of the study suggest that the proposed diagnostic system can be used by physicians to accurately predict heart disease." @default.
- W2920805549 created "2019-03-22" @default.
- W2920805549 creator A5027589391 @default.
- W2920805549 creator A5039846286 @default.
- W2920805549 creator A5065153516 @default.
- W2920805549 creator A5066041117 @default.
- W2920805549 creator A5070343465 @default.
- W2920805549 creator A5071063114 @default.
- W2920805549 date "2019-01-01" @default.
- W2920805549 modified "2023-10-15" @default.
- W2920805549 title "An Automated Diagnostic System for Heart Disease Prediction Based on ${chi^{2}}$ Statistical Model and Optimally Configured Deep Neural Network" @default.
- W2920805549 cites W1493519919 @default.
- W2920805549 cites W1724442104 @default.
- W2920805549 cites W1973994378 @default.
- W2920805549 cites W2026841079 @default.
- W2920805549 cites W2062302861 @default.
- W2920805549 cites W2078590217 @default.
- W2920805549 cites W2087304521 @default.
- W2920805549 cites W2092964187 @default.
- W2920805549 cites W2111508422 @default.
- W2920805549 cites W2160815625 @default.
- W2920805549 cites W2171949900 @default.
- W2920805549 cites W2173730923 @default.
- W2920805549 cites W2250033699 @default.
- W2920805549 cites W2321931943 @default.
- W2920805549 cites W2410326731 @default.
- W2920805549 cites W2499509962 @default.
- W2920805549 cites W2531733772 @default.
- W2920805549 cites W2532144455 @default.
- W2920805549 cites W2579725890 @default.
- W2920805549 cites W2620656322 @default.
- W2920805549 cites W2751330684 @default.
- W2920805549 cites W2776897388 @default.
- W2920805549 cites W2803098482 @default.
- W2920805549 doi "https://doi.org/10.1109/access.2019.2904800" @default.
- W2920805549 hasPublicationYear "2019" @default.
- W2920805549 type Work @default.
- W2920805549 sameAs 2920805549 @default.
- W2920805549 citedByCount "151" @default.
- W2920805549 countsByYear W29208055492019 @default.
- W2920805549 countsByYear W29208055492020 @default.
- W2920805549 countsByYear W29208055492021 @default.
- W2920805549 countsByYear W29208055492022 @default.
- W2920805549 countsByYear W29208055492023 @default.
- W2920805549 crossrefType "journal-article" @default.
- W2920805549 hasAuthorship W2920805549A5027589391 @default.
- W2920805549 hasAuthorship W2920805549A5039846286 @default.
- W2920805549 hasAuthorship W2920805549A5065153516 @default.
- W2920805549 hasAuthorship W2920805549A5066041117 @default.
- W2920805549 hasAuthorship W2920805549A5070343465 @default.
- W2920805549 hasAuthorship W2920805549A5071063114 @default.
- W2920805549 hasBestOaLocation W29208055491 @default.
- W2920805549 hasConcept C108583219 @default.
- W2920805549 hasConcept C119857082 @default.
- W2920805549 hasConcept C120665830 @default.
- W2920805549 hasConcept C121332964 @default.
- W2920805549 hasConcept C124101348 @default.
- W2920805549 hasConcept C153180895 @default.
- W2920805549 hasConcept C154945302 @default.
- W2920805549 hasConcept C192209626 @default.
- W2920805549 hasConcept C22019652 @default.
- W2920805549 hasConcept C34736171 @default.
- W2920805549 hasConcept C41008148 @default.
- W2920805549 hasConcept C50644808 @default.
- W2920805549 hasConceptScore W2920805549C108583219 @default.
- W2920805549 hasConceptScore W2920805549C119857082 @default.
- W2920805549 hasConceptScore W2920805549C120665830 @default.
- W2920805549 hasConceptScore W2920805549C121332964 @default.
- W2920805549 hasConceptScore W2920805549C124101348 @default.
- W2920805549 hasConceptScore W2920805549C153180895 @default.
- W2920805549 hasConceptScore W2920805549C154945302 @default.
- W2920805549 hasConceptScore W2920805549C192209626 @default.
- W2920805549 hasConceptScore W2920805549C22019652 @default.
- W2920805549 hasConceptScore W2920805549C34736171 @default.
- W2920805549 hasConceptScore W2920805549C41008148 @default.
- W2920805549 hasConceptScore W2920805549C50644808 @default.
- W2920805549 hasLocation W29208055491 @default.
- W2920805549 hasOpenAccess W2920805549 @default.
- W2920805549 hasPrimaryLocation W29208055491 @default.
- W2920805549 hasRelatedWork W1574414179 @default.
- W2920805549 hasRelatedWork W2490526372 @default.
- W2920805549 hasRelatedWork W2991587282 @default.
- W2920805549 hasRelatedWork W3008919350 @default.
- W2920805549 hasRelatedWork W3099765033 @default.
- W2920805549 hasRelatedWork W4281702477 @default.
- W2920805549 hasRelatedWork W4288018740 @default.
- W2920805549 hasRelatedWork W4297676672 @default.
- W2920805549 hasRelatedWork W4362597605 @default.
- W2920805549 hasRelatedWork W4378510483 @default.
- W2920805549 hasVolume "7" @default.
- W2920805549 isParatext "false" @default.
- W2920805549 isRetracted "false" @default.
- W2920805549 magId "2920805549" @default.
- W2920805549 workType "article" @default.