Matches in SemOpenAlex for { <https://semopenalex.org/work/W2920829056> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2920829056 abstract "The increasing amount and complexity of cyber security attacks in recent years have made text analysis and data-mining based techniques an important factor in detecting security threats. However, despite the popularity of text and other data mining techniques, the cyber security community has remained somehow reluctant in adopting an open approach to security-related data. In this paper, we analyze a dataset that has been collected from five Small and Medium companies in South Korea, this dataset represents cyber security incidents and response actions. We investigate how the data representing different incidents collected from multiple companies can help improve the classification accuracy and help the classifiers in distinguishing between different types of incidents. A model has been developed using text mining methods, such as n-gram, bag-of-words and machine learning algorithms for the classification of incidents and their response actions. Experimental results have demonstrated good performance of the classifiers for the prediction of different types of response and malware." @default.
- W2920829056 created "2019-03-22" @default.
- W2920829056 creator A5014464350 @default.
- W2920829056 creator A5029393854 @default.
- W2920829056 creator A5063706430 @default.
- W2920829056 creator A5080289677 @default.
- W2920829056 date "2019-01-01" @default.
- W2920829056 modified "2023-09-25" @default.
- W2920829056 title "Predicting CyberSecurity Incidents using Machine Learning Algorithms: A Case Study of Korean SMEs" @default.
- W2920829056 cites W1112003332 @default.
- W2920829056 cites W1489517460 @default.
- W2920829056 cites W1497883910 @default.
- W2920829056 cites W1531869710 @default.
- W2920829056 cites W1629811776 @default.
- W2920829056 cites W1760401052 @default.
- W2920829056 cites W1851403712 @default.
- W2920829056 cites W1980558234 @default.
- W2920829056 cites W2107966619 @default.
- W2920829056 cites W2144112223 @default.
- W2920829056 cites W2150188172 @default.
- W2920829056 cites W2155524176 @default.
- W2920829056 cites W2155903863 @default.
- W2920829056 cites W2164956449 @default.
- W2920829056 cites W2170770919 @default.
- W2920829056 cites W2237959143 @default.
- W2920829056 cites W2320041498 @default.
- W2920829056 cites W2325050524 @default.
- W2920829056 cites W2464274269 @default.
- W2920829056 cites W2529520772 @default.
- W2920829056 cites W2589223628 @default.
- W2920829056 cites W2598013515 @default.
- W2920829056 cites W2780044948 @default.
- W2920829056 doi "https://doi.org/10.5220/0007309302300237" @default.
- W2920829056 hasPublicationYear "2019" @default.
- W2920829056 type Work @default.
- W2920829056 sameAs 2920829056 @default.
- W2920829056 citedByCount "5" @default.
- W2920829056 countsByYear W29208290562019 @default.
- W2920829056 countsByYear W29208290562021 @default.
- W2920829056 countsByYear W29208290562022 @default.
- W2920829056 countsByYear W29208290562023 @default.
- W2920829056 crossrefType "proceedings-article" @default.
- W2920829056 hasAuthorship W2920829056A5014464350 @default.
- W2920829056 hasAuthorship W2920829056A5029393854 @default.
- W2920829056 hasAuthorship W2920829056A5063706430 @default.
- W2920829056 hasAuthorship W2920829056A5080289677 @default.
- W2920829056 hasBestOaLocation W29208290561 @default.
- W2920829056 hasConcept C11413529 @default.
- W2920829056 hasConcept C38652104 @default.
- W2920829056 hasConcept C41008148 @default.
- W2920829056 hasConceptScore W2920829056C11413529 @default.
- W2920829056 hasConceptScore W2920829056C38652104 @default.
- W2920829056 hasConceptScore W2920829056C41008148 @default.
- W2920829056 hasLocation W29208290561 @default.
- W2920829056 hasLocation W29208290562 @default.
- W2920829056 hasOpenAccess W2920829056 @default.
- W2920829056 hasPrimaryLocation W29208290561 @default.
- W2920829056 hasRelatedWork W2003465964 @default.
- W2920829056 hasRelatedWork W2333698505 @default.
- W2920829056 hasRelatedWork W2351491280 @default.
- W2920829056 hasRelatedWork W2371447506 @default.
- W2920829056 hasRelatedWork W2386767533 @default.
- W2920829056 hasRelatedWork W2748952813 @default.
- W2920829056 hasRelatedWork W2889453578 @default.
- W2920829056 hasRelatedWork W2899084033 @default.
- W2920829056 hasRelatedWork W303980170 @default.
- W2920829056 hasRelatedWork W3141679561 @default.
- W2920829056 isParatext "false" @default.
- W2920829056 isRetracted "false" @default.
- W2920829056 magId "2920829056" @default.
- W2920829056 workType "article" @default.