Matches in SemOpenAlex for { <https://semopenalex.org/work/W2920856741> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2920856741 abstract "Abstract Application of predictive models in industrial multiphase flow metering has attracted an increasing attention recently. Void fraction (VF), water–liquid ratio (WLR), and flow regime are key parameters, measured by oil/water/gas multiphase flow metres (MPFM) in petroleum industry. Artificial neural networks and fuzzy inference systems (FIS) are reliable and efficient computational models, which can be simply implemented on microprocessors of MPFMs, having the advantages of trainability, adaptability, and capability to model non‐linear functions. In this paper, a wavelet‐based adaptive neuro‐FIS (WANFIS) is introduced and validated by the prediction of multiphase flow measurement critical parameters including flow regime, VF, and WLR. The performance of the proposed WANFIS model is then compared with multilayer perceptron (MLP), radial basis function (RBF) network, and an FIS trained by fuzzy c‐means and a subtractive clustering method in the prediction of flow parameters in a customized designed structure of oil/water/gas MPFM. Structural parameters of all predictive models are first optimized to yield the most efficient structure for the available dataset. Comparison is then made between the optimized predictive models, in terms of mean squared error of parameter prediction, computation time, and repeatability of the prediction process. According to the obtained results, MLP model using Levenberg–Marquardt training algorithm and WANFIS model using gradient‐based back propagation dynamical iterative learning algorithm are the most efficient models, which give the best performance compared with other used models. All predictive models can predict the flow regime with 100% accuracy, whereas the highest inaccuracy is related to the prediction of WLR. The results of this study can be used to select and develop the most appropriate predictive model applicable in predicting and identifying flow measurement parameters in industrial MPFMs." @default.
- W2920856741 created "2019-03-22" @default.
- W2920856741 creator A5052408459 @default.
- W2920856741 creator A5060323921 @default.
- W2920856741 date "2019-03-06" @default.
- W2920856741 modified "2023-10-16" @default.
- W2920856741 title "Performance evaluation of multilayer perceptron, radial basis function, fuzzy inference system, and an adaptively tuned fuzzy wavelet neural network in parameter prediction of multiphase flow measurement instrumentation" @default.
- W2920856741 cites W1542813816 @default.
- W2920856741 cites W1557622049 @default.
- W2920856741 cites W1565995812 @default.
- W2920856741 cites W1570834090 @default.
- W2920856741 cites W1976645109 @default.
- W2920856741 cites W1980577797 @default.
- W2920856741 cites W1983423327 @default.
- W2920856741 cites W1989665358 @default.
- W2920856741 cites W1995450389 @default.
- W2920856741 cites W2012725996 @default.
- W2920856741 cites W2019207321 @default.
- W2920856741 cites W2022055758 @default.
- W2920856741 cites W2022578046 @default.
- W2920856741 cites W2023630074 @default.
- W2920856741 cites W2034469499 @default.
- W2920856741 cites W2049122463 @default.
- W2920856741 cites W2059442238 @default.
- W2920856741 cites W2063883491 @default.
- W2920856741 cites W2069892338 @default.
- W2920856741 cites W2079325629 @default.
- W2920856741 cites W2090811425 @default.
- W2920856741 cites W2106504576 @default.
- W2920856741 cites W2151205149 @default.
- W2920856741 cites W2155051324 @default.
- W2920856741 cites W2193692196 @default.
- W2920856741 cites W2320950607 @default.
- W2920856741 cites W2495506792 @default.
- W2920856741 cites W2536580267 @default.
- W2920856741 cites W2564194003 @default.
- W2920856741 cites W2606777546 @default.
- W2920856741 cites W2633139931 @default.
- W2920856741 cites W2761875308 @default.
- W2920856741 cites W4211007335 @default.
- W2920856741 doi "https://doi.org/10.1111/exsy.12386" @default.
- W2920856741 hasPublicationYear "2019" @default.
- W2920856741 type Work @default.
- W2920856741 sameAs 2920856741 @default.
- W2920856741 citedByCount "3" @default.
- W2920856741 countsByYear W29208567412020 @default.
- W2920856741 countsByYear W29208567412021 @default.
- W2920856741 crossrefType "journal-article" @default.
- W2920856741 hasAuthorship W2920856741A5052408459 @default.
- W2920856741 hasAuthorship W2920856741A5060323921 @default.
- W2920856741 hasConcept C11413529 @default.
- W2920856741 hasConcept C119857082 @default.
- W2920856741 hasConcept C121332964 @default.
- W2920856741 hasConcept C154945302 @default.
- W2920856741 hasConcept C179717631 @default.
- W2920856741 hasConcept C186108316 @default.
- W2920856741 hasConcept C195975749 @default.
- W2920856741 hasConcept C2779379648 @default.
- W2920856741 hasConcept C29470771 @default.
- W2920856741 hasConcept C41008148 @default.
- W2920856741 hasConcept C50644808 @default.
- W2920856741 hasConcept C58166 @default.
- W2920856741 hasConcept C60908668 @default.
- W2920856741 hasConcept C62520636 @default.
- W2920856741 hasConcept C98856871 @default.
- W2920856741 hasConceptScore W2920856741C11413529 @default.
- W2920856741 hasConceptScore W2920856741C119857082 @default.
- W2920856741 hasConceptScore W2920856741C121332964 @default.
- W2920856741 hasConceptScore W2920856741C154945302 @default.
- W2920856741 hasConceptScore W2920856741C179717631 @default.
- W2920856741 hasConceptScore W2920856741C186108316 @default.
- W2920856741 hasConceptScore W2920856741C195975749 @default.
- W2920856741 hasConceptScore W2920856741C2779379648 @default.
- W2920856741 hasConceptScore W2920856741C29470771 @default.
- W2920856741 hasConceptScore W2920856741C41008148 @default.
- W2920856741 hasConceptScore W2920856741C50644808 @default.
- W2920856741 hasConceptScore W2920856741C58166 @default.
- W2920856741 hasConceptScore W2920856741C60908668 @default.
- W2920856741 hasConceptScore W2920856741C62520636 @default.
- W2920856741 hasConceptScore W2920856741C98856871 @default.
- W2920856741 hasIssue "3" @default.
- W2920856741 hasLocation W29208567411 @default.
- W2920856741 hasOpenAccess W2920856741 @default.
- W2920856741 hasPrimaryLocation W29208567411 @default.
- W2920856741 hasRelatedWork W1783186681 @default.
- W2920856741 hasRelatedWork W1997128020 @default.
- W2920856741 hasRelatedWork W1999897727 @default.
- W2920856741 hasRelatedWork W2072632473 @default.
- W2920856741 hasRelatedWork W2625424124 @default.
- W2920856741 hasRelatedWork W2920856741 @default.
- W2920856741 hasRelatedWork W3133467804 @default.
- W2920856741 hasRelatedWork W3185179407 @default.
- W2920856741 hasRelatedWork W4231994957 @default.
- W2920856741 hasRelatedWork W2276110787 @default.
- W2920856741 hasVolume "36" @default.
- W2920856741 isParatext "false" @default.
- W2920856741 isRetracted "false" @default.
- W2920856741 magId "2920856741" @default.
- W2920856741 workType "article" @default.