Matches in SemOpenAlex for { <https://semopenalex.org/work/W2920911028> ?p ?o ?g. }
- W2920911028 abstract "The volume of digital content resources written as text documents is growing every day, at an unprecedented rate. Because this content is generally not structured as easy-to-handle units, it can be very difficult for users to find information they are interested in, or to help them accomplish their tasks. This in turn has increased the need for producing tailored content that can be adapted to the needs of individual users. A key challenge for producing such tailored content lies in the ability to understand how this content is structured. Hence, the efficient analysis and understanding of unstructured text content has become increasingly important. This has led to the increasing use of Natural Language Processing (NLP) techniques to help with processing unstructured text documents. Amongst the different NLP techniques, Text Segmentation is specifically used to understand the structure of textual documents. However, current approaches to text segmentation are typically based upon using lexical and/or syntactic representation to build a structure from the unstructured text documents. However, the relationship between segments may be semantic, rather than lexical or syntactic.Furthermore, text segmentation research has primarily focused on techniques that can be used to process text documents but not on how these techniques can be utilised to produce tailored content that can be adapted to the needs of individual users. In contrast, the field of Adaptive Systems has inherently focused on the challenges associated with dynamically adapting and delivering content to individual users. However, adaptive systems have primarily focused upon the techniques of adapting content, not on how to understand and structure this content. Even systems that have focused on structuring content are limited in that they rely upon the original structure of the content resource, which reflects the perspective of its author. Therefore, these systems are limited in that they do not deeply ?understand? the structure of the content, which in turn, limits their capability to discover and supply appropriate content for use in defined contexts, and limits the content?s amenability for reuse within various independent adaptive systems.In order to utilise the strength of NLP techniques to overcome the challenges of understanding unstructured text content, this thesis investigates how NLP techniques can be utilised in order to enhance the supply of content to adaptive systems. Specifically, the contribution of this thesis is concerned with addressing the challenges associated with hierarchical text segmentation techniques, and with content discoverability and reusability for adaptive systems.Firstly, this research proposes a novel hierarchical text segmentation approach, named C-HTS, that builds a structure from text documents based on the semantic representation of text. Semantic representation is a method that replaces keyword-based text representation with concept-based features, where the meaning of a piece of text is represented as a vector of…" @default.
- W2920911028 created "2019-03-22" @default.
- W2920911028 creator A5021568487 @default.
- W2920911028 date "2019-01-01" @default.
- W2920911028 modified "2023-09-23" @default.
- W2920911028 title "Using NLP Techniques to Enhance Content Discoverability and Reusability for Adaptive Systems" @default.
- W2920911028 cites W103880586 @default.
- W2920911028 cites W105299784 @default.
- W2920911028 cites W1157273939 @default.
- W2920911028 cites W116356668 @default.
- W2920911028 cites W145399022 @default.
- W2920911028 cites W1488197732 @default.
- W2920911028 cites W1488461535 @default.
- W2920911028 cites W1508909151 @default.
- W2920911028 cites W1512386184 @default.
- W2920911028 cites W1512463102 @default.
- W2920911028 cites W1512658143 @default.
- W2920911028 cites W1518504231 @default.
- W2920911028 cites W1524333225 @default.
- W2920911028 cites W1525245406 @default.
- W2920911028 cites W1528364018 @default.
- W2920911028 cites W1530140317 @default.
- W2920911028 cites W1533631669 @default.
- W2920911028 cites W1553236215 @default.
- W2920911028 cites W1553428929 @default.
- W2920911028 cites W1557074680 @default.
- W2920911028 cites W1565858359 @default.
- W2920911028 cites W1565886642 @default.
- W2920911028 cites W1571636161 @default.
- W2920911028 cites W1572673819 @default.
- W2920911028 cites W1586273559 @default.
- W2920911028 cites W1598514252 @default.
- W2920911028 cites W1601482488 @default.
- W2920911028 cites W162507755 @default.
- W2920911028 cites W1626945812 @default.
- W2920911028 cites W1644672739 @default.
- W2920911028 cites W1647671624 @default.
- W2920911028 cites W1647729745 @default.
- W2920911028 cites W1649863237 @default.
- W2920911028 cites W1673478674 @default.
- W2920911028 cites W1710422233 @default.
- W2920911028 cites W1735740529 @default.
- W2920911028 cites W1766606308 @default.
- W2920911028 cites W1820722717 @default.
- W2920911028 cites W1822555315 @default.
- W2920911028 cites W1828401780 @default.
- W2920911028 cites W1833785989 @default.
- W2920911028 cites W1837399425 @default.
- W2920911028 cites W1854884267 @default.
- W2920911028 cites W1862888253 @default.
- W2920911028 cites W1880262756 @default.
- W2920911028 cites W1956559956 @default.
- W2920911028 cites W1960027552 @default.
- W2920911028 cites W1968557414 @default.
- W2920911028 cites W1971220772 @default.
- W2920911028 cites W1979734411 @default.
- W2920911028 cites W1980841506 @default.
- W2920911028 cites W1983814883 @default.
- W2920911028 cites W1985141939 @default.
- W2920911028 cites W1991499088 @default.
- W2920911028 cites W1992158881 @default.
- W2920911028 cites W1993318811 @default.
- W2920911028 cites W1994790623 @default.
- W2920911028 cites W1995062661 @default.
- W2920911028 cites W1997987543 @default.
- W2920911028 cites W1998324505 @default.
- W2920911028 cites W2000389083 @default.
- W2920911028 cites W2000546550 @default.
- W2920911028 cites W2005118595 @default.
- W2920911028 cites W2007178086 @default.
- W2920911028 cites W2008652694 @default.
- W2920911028 cites W2009759761 @default.
- W2920911028 cites W2009955331 @default.
- W2920911028 cites W2011709969 @default.
- W2920911028 cites W2018560257 @default.
- W2920911028 cites W2019759670 @default.
- W2920911028 cites W2019933542 @default.
- W2920911028 cites W2020278455 @default.
- W2920911028 cites W2021263432 @default.
- W2920911028 cites W2024091454 @default.
- W2920911028 cites W2024679399 @default.
- W2920911028 cites W2026810221 @default.
- W2920911028 cites W2027823133 @default.
- W2920911028 cites W2028140375 @default.
- W2920911028 cites W2030794875 @default.
- W2920911028 cites W2034462435 @default.
- W2920911028 cites W2034989007 @default.
- W2920911028 cites W2035478074 @default.
- W2920911028 cites W203581879 @default.
- W2920911028 cites W2037304098 @default.
- W2920911028 cites W2042803716 @default.
- W2920911028 cites W2044784262 @default.
- W2920911028 cites W2045433035 @default.
- W2920911028 cites W2045738181 @default.
- W2920911028 cites W2046545110 @default.
- W2920911028 cites W2052978665 @default.
- W2920911028 cites W2056325010 @default.
- W2920911028 cites W2061598441 @default.
- W2920911028 cites W2065209767 @default.
- W2920911028 cites W2065602513 @default.