Matches in SemOpenAlex for { <https://semopenalex.org/work/W2920971548> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2920971548 abstract "Abstract Introduction Reproducible research is increasingly gaining interest in the research community. Automating the production of research manuscript tables from statistical software can help increase the reproducibility of findings. Logistic regression is used in studying disease prevalence and associated factors in epidemiological studies and can be easily performed using widely available software including SAS, SUDAAN, Stata or R. However, output from these software must be processed further to make it readily presentable. There exists a number of procedures developed to organize regression output, though many of them suffer limitations of flexibility, complexity, lack of validation checks for input parameters, as well as inability to incorporate survey design. Methods We developed a SAS macro, %svy_logistic_regression , for fitting simple and multiple logistic regression models. The macro also creates quality publication-ready tables using survey or non-survey data which aims to increase transparency of data analyses. It further significantly reduces turn-around time for conducting analysis and preparing output tables while also addressing the limitations of existing procedures. Results We demonstrate the use of the macro in the analysis of the 2013-2014 National Health and Nutrition Examination Survey (NHANES), a complex survey designed to assess the health and nutritional status of adults and children in the United States. The output presented here is directly from the macro and is consistent with how regression results are often presented in the epidemiological and biomedical literature, with unadjusted and adjusted model results presented side by side. Conclusions The SAS code presented in this macro is comprehensive, easy to follow, manipulate and to extend to other areas of interest. It can also be incorporated quickly by the statistician for immediate use. It is an especially valuable tool for generating quality, easy to review tables which can be incorporated directly in a publication." @default.
- W2920971548 created "2019-03-22" @default.
- W2920971548 creator A5010701609 @default.
- W2920971548 creator A5074001560 @default.
- W2920971548 creator A5091668063 @default.
- W2920971548 date "2019-03-13" @default.
- W2920971548 modified "2023-09-28" @default.
- W2920971548 title "‘%svy_logistic_regression: A generic SAS® macro for simple and multiple logistic regression and creating quality publication-ready tables using survey or non-survey data" @default.
- W2920971548 cites W1520363489 @default.
- W2920971548 cites W1568764729 @default.
- W2920971548 cites W1622128722 @default.
- W2920971548 cites W2008985174 @default.
- W2920971548 cites W2055146603 @default.
- W2920971548 cites W2061891752 @default.
- W2920971548 cites W2143964357 @default.
- W2920971548 cites W2169512394 @default.
- W2920971548 cites W2228927609 @default.
- W2920971548 cites W2253838370 @default.
- W2920971548 cites W2318821245 @default.
- W2920971548 cites W2396048690 @default.
- W2920971548 doi "https://doi.org/10.1101/575605" @default.
- W2920971548 hasPublicationYear "2019" @default.
- W2920971548 type Work @default.
- W2920971548 sameAs 2920971548 @default.
- W2920971548 citedByCount "0" @default.
- W2920971548 crossrefType "posted-content" @default.
- W2920971548 hasAuthorship W2920971548A5010701609 @default.
- W2920971548 hasAuthorship W2920971548A5074001560 @default.
- W2920971548 hasAuthorship W2920971548A5091668063 @default.
- W2920971548 hasBestOaLocation W29209715481 @default.
- W2920971548 hasConcept C105795698 @default.
- W2920971548 hasConcept C119857082 @default.
- W2920971548 hasConcept C124101348 @default.
- W2920971548 hasConcept C151956035 @default.
- W2920971548 hasConcept C152877465 @default.
- W2920971548 hasConcept C166955791 @default.
- W2920971548 hasConcept C198477413 @default.
- W2920971548 hasConcept C199360897 @default.
- W2920971548 hasConcept C2777904410 @default.
- W2920971548 hasConcept C2780598303 @default.
- W2920971548 hasConcept C33923547 @default.
- W2920971548 hasConcept C41008148 @default.
- W2920971548 hasConceptScore W2920971548C105795698 @default.
- W2920971548 hasConceptScore W2920971548C119857082 @default.
- W2920971548 hasConceptScore W2920971548C124101348 @default.
- W2920971548 hasConceptScore W2920971548C151956035 @default.
- W2920971548 hasConceptScore W2920971548C152877465 @default.
- W2920971548 hasConceptScore W2920971548C166955791 @default.
- W2920971548 hasConceptScore W2920971548C198477413 @default.
- W2920971548 hasConceptScore W2920971548C199360897 @default.
- W2920971548 hasConceptScore W2920971548C2777904410 @default.
- W2920971548 hasConceptScore W2920971548C2780598303 @default.
- W2920971548 hasConceptScore W2920971548C33923547 @default.
- W2920971548 hasConceptScore W2920971548C41008148 @default.
- W2920971548 hasLocation W29209715481 @default.
- W2920971548 hasLocation W29209715482 @default.
- W2920971548 hasOpenAccess W2920971548 @default.
- W2920971548 hasPrimaryLocation W29209715481 @default.
- W2920971548 hasRelatedWork W1496512450 @default.
- W2920971548 hasRelatedWork W1723129825 @default.
- W2920971548 hasRelatedWork W2011693100 @default.
- W2920971548 hasRelatedWork W2031540871 @default.
- W2920971548 hasRelatedWork W2050674783 @default.
- W2920971548 hasRelatedWork W2051781197 @default.
- W2920971548 hasRelatedWork W2081461437 @default.
- W2920971548 hasRelatedWork W2114950585 @default.
- W2920971548 hasRelatedWork W2185257341 @default.
- W2920971548 hasRelatedWork W2246298223 @default.
- W2920971548 hasRelatedWork W2299942018 @default.
- W2920971548 hasRelatedWork W2417161434 @default.
- W2920971548 hasRelatedWork W2493292907 @default.
- W2920971548 hasRelatedWork W2972070202 @default.
- W2920971548 hasRelatedWork W3013332776 @default.
- W2920971548 hasRelatedWork W3130410503 @default.
- W2920971548 hasRelatedWork W659386111 @default.
- W2920971548 hasRelatedWork W2120619843 @default.
- W2920971548 hasRelatedWork W2153745044 @default.
- W2920971548 hasRelatedWork W3034249535 @default.
- W2920971548 isParatext "false" @default.
- W2920971548 isRetracted "false" @default.
- W2920971548 magId "2920971548" @default.
- W2920971548 workType "article" @default.