Matches in SemOpenAlex for { <https://semopenalex.org/work/W2920979450> ?p ?o ?g. }
- W2920979450 abstract "Detecting culprit coronary arteries in patients with ischemia using only myocardial perfusion single-photon emission computed tomography (SPECT) can be challenging. This study aimed to improve the detection of culprit regions using an artificial neural network (ANN) to analyze hybrid images of coronary computed tomography angiography (CCTA) and myocardial perfusion SPECT. This study enrolled 59 patients with stable coronary artery disease (CAD) who had been assessed by coronary angiography within 60 days of myocardial perfusion SPECT. Two nuclear medicine physicians interpreted the myocardial perfusion SPECT and hybrid images with four grades of confidence, then drew regions on polar maps to identify culprit coronary arteries. The gold standard was determined by the consensus of two other nuclear cardiology specialist based on coronary angiography findings and clinical information. The ability to detect culprit coronary arteries was compared among experienced nuclear cardiologists and the ANN. Receiver operating characteristics (ROC) curves were analyzed and areas under the ROC curves (AUC) were determined. Using hybrid images, observer A detected CAD in the right (RCA), left anterior descending (LAD), and left circumflex (LCX) coronary arteries with 83.6%, 89.3%, and 94.4% accuracy, respectively and observer B did so with 72.9%, 84.2%, and 89.3%, respectively. The ANN was 79.1%, 89.8%, and 89.3% accurate for each coronary artery. Diagnostic accuracy was comparable between the ANN and experienced nuclear medicine physicians. The AUC was significantly improved using hybrid images in the RCA region (observer A: from 0.715 to 0.835, p = 0.0031; observer B: from 0.771 to 0.843, p = 0.042). To detect culprit coronary arteries in perfusion defects of the inferior wall without using hybrid images was problematic because the perfused areas of the LCX and RCA varied among individuals. Hybrid images of CCTA and myocardial perfusion SPECT are useful for detecting culprit coronary arteries. Diagnoses using artificial intelligence are comparable to that by nuclear medicine physicians." @default.
- W2920979450 created "2019-03-22" @default.
- W2920979450 creator A5026442896 @default.
- W2920979450 creator A5028966817 @default.
- W2920979450 creator A5042818116 @default.
- W2920979450 creator A5064719327 @default.
- W2920979450 creator A5065091370 @default.
- W2920979450 creator A5079561204 @default.
- W2920979450 creator A5082096314 @default.
- W2920979450 creator A5087337495 @default.
- W2920979450 creator A5087930735 @default.
- W2920979450 creator A5090705147 @default.
- W2920979450 date "2019-03-18" @default.
- W2920979450 modified "2023-10-11" @default.
- W2920979450 title "Ability of artificial intelligence to diagnose coronary artery stenosis using hybrid images of coronary computed tomography angiography and myocardial perfusion SPECT" @default.
- W2920979450 cites W1489976343 @default.
- W2920979450 cites W1967424056 @default.
- W2920979450 cites W1973142799 @default.
- W2920979450 cites W1985108699 @default.
- W2920979450 cites W2031917779 @default.
- W2920979450 cites W2034147808 @default.
- W2920979450 cites W2065385187 @default.
- W2920979450 cites W2067058027 @default.
- W2920979450 cites W2103381850 @default.
- W2920979450 cites W2113108297 @default.
- W2920979450 cites W2115198902 @default.
- W2920979450 cites W2125741545 @default.
- W2920979450 cites W2141280582 @default.
- W2920979450 cites W2167408020 @default.
- W2920979450 cites W2287731000 @default.
- W2920979450 cites W2550945250 @default.
- W2920979450 cites W2552614477 @default.
- W2920979450 cites W2560436778 @default.
- W2920979450 cites W2615022822 @default.
- W2920979450 cites W2750188878 @default.
- W2920979450 cites W2759653730 @default.
- W2920979450 cites W2763394400 @default.
- W2920979450 cites W2765939143 @default.
- W2920979450 cites W2766774661 @default.
- W2920979450 cites W2768136490 @default.
- W2920979450 cites W2789684748 @default.
- W2920979450 cites W2804553428 @default.
- W2920979450 cites W2888772475 @default.
- W2920979450 doi "https://doi.org/10.1186/s41824-019-0052-8" @default.
- W2920979450 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8212308" @default.
- W2920979450 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34191159" @default.
- W2920979450 hasPublicationYear "2019" @default.
- W2920979450 type Work @default.
- W2920979450 sameAs 2920979450 @default.
- W2920979450 citedByCount "10" @default.
- W2920979450 countsByYear W29209794502020 @default.
- W2920979450 countsByYear W29209794502021 @default.
- W2920979450 countsByYear W29209794502022 @default.
- W2920979450 countsByYear W29209794502023 @default.
- W2920979450 crossrefType "journal-article" @default.
- W2920979450 hasAuthorship W2920979450A5026442896 @default.
- W2920979450 hasAuthorship W2920979450A5028966817 @default.
- W2920979450 hasAuthorship W2920979450A5042818116 @default.
- W2920979450 hasAuthorship W2920979450A5064719327 @default.
- W2920979450 hasAuthorship W2920979450A5065091370 @default.
- W2920979450 hasAuthorship W2920979450A5079561204 @default.
- W2920979450 hasAuthorship W2920979450A5082096314 @default.
- W2920979450 hasAuthorship W2920979450A5087337495 @default.
- W2920979450 hasAuthorship W2920979450A5087930735 @default.
- W2920979450 hasAuthorship W2920979450A5090705147 @default.
- W2920979450 hasBestOaLocation W29209794501 @default.
- W2920979450 hasConcept C126322002 @default.
- W2920979450 hasConcept C126838900 @default.
- W2920979450 hasConcept C135691158 @default.
- W2920979450 hasConcept C146957229 @default.
- W2920979450 hasConcept C164705383 @default.
- W2920979450 hasConcept C197321550 @default.
- W2920979450 hasConcept C2776820930 @default.
- W2920979450 hasConcept C2778088351 @default.
- W2920979450 hasConcept C2778213512 @default.
- W2920979450 hasConcept C2778405248 @default.
- W2920979450 hasConcept C2778742706 @default.
- W2920979450 hasConcept C2778826181 @default.
- W2920979450 hasConcept C2780441642 @default.
- W2920979450 hasConcept C2780643987 @default.
- W2920979450 hasConcept C2989005 @default.
- W2920979450 hasConcept C3019004856 @default.
- W2920979450 hasConcept C40993552 @default.
- W2920979450 hasConcept C500558357 @default.
- W2920979450 hasConcept C58471807 @default.
- W2920979450 hasConcept C71924100 @default.
- W2920979450 hasConceptScore W2920979450C126322002 @default.
- W2920979450 hasConceptScore W2920979450C126838900 @default.
- W2920979450 hasConceptScore W2920979450C135691158 @default.
- W2920979450 hasConceptScore W2920979450C146957229 @default.
- W2920979450 hasConceptScore W2920979450C164705383 @default.
- W2920979450 hasConceptScore W2920979450C197321550 @default.
- W2920979450 hasConceptScore W2920979450C2776820930 @default.
- W2920979450 hasConceptScore W2920979450C2778088351 @default.
- W2920979450 hasConceptScore W2920979450C2778213512 @default.
- W2920979450 hasConceptScore W2920979450C2778405248 @default.
- W2920979450 hasConceptScore W2920979450C2778742706 @default.
- W2920979450 hasConceptScore W2920979450C2778826181 @default.
- W2920979450 hasConceptScore W2920979450C2780441642 @default.
- W2920979450 hasConceptScore W2920979450C2780643987 @default.