Matches in SemOpenAlex for { <https://semopenalex.org/work/W2920994809> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2920994809 abstract "In large-scale and sparse environments, such as farmlands, orchards, mines and electrical substations, global localization based on particle filter framework without any prior knowledge still remains a challenging problem. Some issues such as speeding up the convergence of particles and improving the convergence accuracy in similar scenes need to be addressed. This paper proposes a novel global localization method, which treats the global localization problem as place recognition and pose estimation problem. Specifically, we firstly utilize the random forests algorithm to train a classifier to predict whether two 3D LiDAR observations are from the same place. Then, the classifier is used to match the current observation with the prior map to estimate the possible initial pose of the robot. Finally, a multiple hypotheses particle filter algorithm is proposed to achieve final localization. Experimental scenes are selected in the indoor parking lot with high dynamic characteristics and two electrical substations with the characteristics of sparse and large-scale. The experimental results show that the proposed algorithm has faster convergence speed and higher accuracy." @default.
- W2920994809 created "2019-03-22" @default.
- W2920994809 creator A5024406676 @default.
- W2920994809 creator A5024584263 @default.
- W2920994809 creator A5054513966 @default.
- W2920994809 creator A5083038366 @default.
- W2920994809 date "2018-12-01" @default.
- W2920994809 modified "2023-10-14" @default.
- W2920994809 title "A Novel Global Localization Method Using 3D Laser Range Data in Large-Scale and Sparse Environments" @default.
- W2920994809 cites W1577509784 @default.
- W2920994809 cites W1650975994 @default.
- W2920994809 cites W2045162826 @default.
- W2920994809 cites W2097832352 @default.
- W2920994809 cites W2101230708 @default.
- W2920994809 cites W2131821152 @default.
- W2920994809 cites W2132311402 @default.
- W2920994809 cites W2213518912 @default.
- W2920994809 cites W2336416123 @default.
- W2920994809 doi "https://doi.org/10.1109/robio.2018.8664836" @default.
- W2920994809 hasPublicationYear "2018" @default.
- W2920994809 type Work @default.
- W2920994809 sameAs 2920994809 @default.
- W2920994809 citedByCount "1" @default.
- W2920994809 countsByYear W29209948092019 @default.
- W2920994809 crossrefType "proceedings-article" @default.
- W2920994809 hasAuthorship W2920994809A5024406676 @default.
- W2920994809 hasAuthorship W2920994809A5024584263 @default.
- W2920994809 hasAuthorship W2920994809A5054513966 @default.
- W2920994809 hasAuthorship W2920994809A5083038366 @default.
- W2920994809 hasConcept C106131492 @default.
- W2920994809 hasConcept C11413529 @default.
- W2920994809 hasConcept C124101348 @default.
- W2920994809 hasConcept C127413603 @default.
- W2920994809 hasConcept C146978453 @default.
- W2920994809 hasConcept C154945302 @default.
- W2920994809 hasConcept C162324750 @default.
- W2920994809 hasConcept C19966478 @default.
- W2920994809 hasConcept C204323151 @default.
- W2920994809 hasConcept C205649164 @default.
- W2920994809 hasConcept C2777303404 @default.
- W2920994809 hasConcept C2778755073 @default.
- W2920994809 hasConcept C31972630 @default.
- W2920994809 hasConcept C41008148 @default.
- W2920994809 hasConcept C50522688 @default.
- W2920994809 hasConcept C51399673 @default.
- W2920994809 hasConcept C52421305 @default.
- W2920994809 hasConcept C58640448 @default.
- W2920994809 hasConcept C62649853 @default.
- W2920994809 hasConcept C86369673 @default.
- W2920994809 hasConcept C90509273 @default.
- W2920994809 hasConcept C95623464 @default.
- W2920994809 hasConceptScore W2920994809C106131492 @default.
- W2920994809 hasConceptScore W2920994809C11413529 @default.
- W2920994809 hasConceptScore W2920994809C124101348 @default.
- W2920994809 hasConceptScore W2920994809C127413603 @default.
- W2920994809 hasConceptScore W2920994809C146978453 @default.
- W2920994809 hasConceptScore W2920994809C154945302 @default.
- W2920994809 hasConceptScore W2920994809C162324750 @default.
- W2920994809 hasConceptScore W2920994809C19966478 @default.
- W2920994809 hasConceptScore W2920994809C204323151 @default.
- W2920994809 hasConceptScore W2920994809C205649164 @default.
- W2920994809 hasConceptScore W2920994809C2777303404 @default.
- W2920994809 hasConceptScore W2920994809C2778755073 @default.
- W2920994809 hasConceptScore W2920994809C31972630 @default.
- W2920994809 hasConceptScore W2920994809C41008148 @default.
- W2920994809 hasConceptScore W2920994809C50522688 @default.
- W2920994809 hasConceptScore W2920994809C51399673 @default.
- W2920994809 hasConceptScore W2920994809C52421305 @default.
- W2920994809 hasConceptScore W2920994809C58640448 @default.
- W2920994809 hasConceptScore W2920994809C62649853 @default.
- W2920994809 hasConceptScore W2920994809C86369673 @default.
- W2920994809 hasConceptScore W2920994809C90509273 @default.
- W2920994809 hasConceptScore W2920994809C95623464 @default.
- W2920994809 hasLocation W29209948091 @default.
- W2920994809 hasOpenAccess W2920994809 @default.
- W2920994809 hasPrimaryLocation W29209948091 @default.
- W2920994809 hasRelatedWork W2020164879 @default.
- W2920994809 hasRelatedWork W2121069978 @default.
- W2920994809 hasRelatedWork W2123726238 @default.
- W2920994809 hasRelatedWork W2138294682 @default.
- W2920994809 hasRelatedWork W2158906170 @default.
- W2920994809 hasRelatedWork W2401480031 @default.
- W2920994809 hasRelatedWork W2564833109 @default.
- W2920994809 hasRelatedWork W2891031479 @default.
- W2920994809 hasRelatedWork W2909955272 @default.
- W2920994809 hasRelatedWork W782436145 @default.
- W2920994809 isParatext "false" @default.
- W2920994809 isRetracted "false" @default.
- W2920994809 magId "2920994809" @default.
- W2920994809 workType "article" @default.