Matches in SemOpenAlex for { <https://semopenalex.org/work/W2920994911> ?p ?o ?g. }
- W2920994911 abstract "This paper presents a comparison of different machine learning techniques for classification of the unbalance and damage Niquel-Metal Hydride (Ni-MH) battery cells used in hybrid electric vehicles (HEV) and electric vehicles (EV). The implemented linear and non-linear classification algorithms used in this study are: logistic regression (LR), k-nearest neighbors (k-NN), kernel space vector machine (KSVM), Gaussian naive Bayes (GNB) and a neural network (NN); the classifiers in this work used the principal component analysis (PCA) in dual variables to reduce the high dimensional data set. To evaluate the performance of the classifiers, experimental results and a detailed analysis of the confusion matrix are used where the effectiveness of the algorithms are demonstrated." @default.
- W2920994911 created "2019-03-22" @default.
- W2920994911 creator A5015836209 @default.
- W2920994911 creator A5033670183 @default.
- W2920994911 creator A5036036390 @default.
- W2920994911 creator A5052617048 @default.
- W2920994911 creator A5074641307 @default.
- W2920994911 date "2018-11-01" @default.
- W2920994911 modified "2023-09-27" @default.
- W2920994911 title "Analysis of Machine Learning Techniques for the Intelligent Diagnosis of Ni-MH Battery Cells" @default.
- W2920994911 cites W1145556568 @default.
- W2920994911 cites W1593033326 @default.
- W2920994911 cites W1977838479 @default.
- W2920994911 cites W1986907389 @default.
- W2920994911 cites W1998803278 @default.
- W2920994911 cites W2003685400 @default.
- W2920994911 cites W2010512848 @default.
- W2920994911 cites W2032026767 @default.
- W2920994911 cites W2043976158 @default.
- W2920994911 cites W2050973892 @default.
- W2920994911 cites W2054408665 @default.
- W2920994911 cites W2055531267 @default.
- W2920994911 cites W2063763346 @default.
- W2920994911 cites W2076954782 @default.
- W2920994911 cites W2081434183 @default.
- W2920994911 cites W2092460788 @default.
- W2920994911 cites W2093103229 @default.
- W2920994911 cites W2108084892 @default.
- W2920994911 cites W2120865735 @default.
- W2920994911 cites W2140785063 @default.
- W2920994911 cites W2142579941 @default.
- W2920994911 cites W2142653678 @default.
- W2920994911 cites W2142827986 @default.
- W2920994911 cites W2151040995 @default.
- W2920994911 cites W2155402159 @default.
- W2920994911 cites W2159935273 @default.
- W2920994911 cites W2166183437 @default.
- W2920994911 cites W2290145898 @default.
- W2920994911 cites W2298989526 @default.
- W2920994911 cites W2509876630 @default.
- W2920994911 cites W2552529915 @default.
- W2920994911 cites W2553647727 @default.
- W2920994911 cites W2741422149 @default.
- W2920994911 cites W2787573767 @default.
- W2920994911 cites W2808209024 @default.
- W2920994911 cites W2809994024 @default.
- W2920994911 cites W4292023222 @default.
- W2920994911 doi "https://doi.org/10.1109/ropec.2018.8661446" @default.
- W2920994911 hasPublicationYear "2018" @default.
- W2920994911 type Work @default.
- W2920994911 sameAs 2920994911 @default.
- W2920994911 citedByCount "4" @default.
- W2920994911 countsByYear W29209949112020 @default.
- W2920994911 countsByYear W29209949112021 @default.
- W2920994911 countsByYear W29209949112022 @default.
- W2920994911 crossrefType "proceedings-article" @default.
- W2920994911 hasAuthorship W2920994911A5015836209 @default.
- W2920994911 hasAuthorship W2920994911A5033670183 @default.
- W2920994911 hasAuthorship W2920994911A5036036390 @default.
- W2920994911 hasAuthorship W2920994911A5052617048 @default.
- W2920994911 hasAuthorship W2920994911A5074641307 @default.
- W2920994911 hasConcept C11413529 @default.
- W2920994911 hasConcept C114614502 @default.
- W2920994911 hasConcept C119857082 @default.
- W2920994911 hasConcept C121332964 @default.
- W2920994911 hasConcept C12267149 @default.
- W2920994911 hasConcept C138602881 @default.
- W2920994911 hasConcept C153180895 @default.
- W2920994911 hasConcept C154945302 @default.
- W2920994911 hasConcept C163258240 @default.
- W2920994911 hasConcept C27438332 @default.
- W2920994911 hasConcept C33923547 @default.
- W2920994911 hasConcept C41008148 @default.
- W2920994911 hasConcept C50644808 @default.
- W2920994911 hasConcept C52001869 @default.
- W2920994911 hasConcept C555008776 @default.
- W2920994911 hasConcept C62520636 @default.
- W2920994911 hasConcept C74193536 @default.
- W2920994911 hasConceptScore W2920994911C11413529 @default.
- W2920994911 hasConceptScore W2920994911C114614502 @default.
- W2920994911 hasConceptScore W2920994911C119857082 @default.
- W2920994911 hasConceptScore W2920994911C121332964 @default.
- W2920994911 hasConceptScore W2920994911C12267149 @default.
- W2920994911 hasConceptScore W2920994911C138602881 @default.
- W2920994911 hasConceptScore W2920994911C153180895 @default.
- W2920994911 hasConceptScore W2920994911C154945302 @default.
- W2920994911 hasConceptScore W2920994911C163258240 @default.
- W2920994911 hasConceptScore W2920994911C27438332 @default.
- W2920994911 hasConceptScore W2920994911C33923547 @default.
- W2920994911 hasConceptScore W2920994911C41008148 @default.
- W2920994911 hasConceptScore W2920994911C50644808 @default.
- W2920994911 hasConceptScore W2920994911C52001869 @default.
- W2920994911 hasConceptScore W2920994911C555008776 @default.
- W2920994911 hasConceptScore W2920994911C62520636 @default.
- W2920994911 hasConceptScore W2920994911C74193536 @default.
- W2920994911 hasLocation W29209949111 @default.
- W2920994911 hasOpenAccess W2920994911 @default.
- W2920994911 hasPrimaryLocation W29209949111 @default.
- W2920994911 hasRelatedWork W1982718731 @default.
- W2920994911 hasRelatedWork W2077193964 @default.