Matches in SemOpenAlex for { <https://semopenalex.org/work/W2920996920> ?p ?o ?g. }
- W2920996920 endingPage "40346" @default.
- W2920996920 startingPage "40333" @default.
- W2920996920 abstract "Collaborative filtering (CF) approach has been successfully used in recommender system (RS). Sparsity and cold start are two common phenomena in the CF algorithms nearly for each data set. Hence, these drawbacks of the classical CF algorithms have limited the recommendation performance. Deep learning theory is a very useful tool to mine the latent features in many scientific areas, such as image processing, video processing, and signal processing. In this paper, a novel deep learning-based recommendation model is introduced to solve the sparsity and cold start recommendation problems by mining the auxiliary data of users' viewing behavior datasets (e.g., the user attribute features information and video item attribute features information) and to deeply mine the latent information and their correlations of the user features and item features. First of all, the user features and video item features are processed and deeply mined by the data preprocessing layer, embedding dense layer, convolution network layer, share layer, and the auto encoder layer of our proposed model. After that, the final predictive rating process is conducted in multi-layer perception by combining with the target rating vector data and the processed user and item feature data, which is deeply mined by the above-mentioned submodels of our proposed algorithm model. The extensive experiments have shown the benefits of the proposed algorithm in the measure of mean absolute error (MAE) and root mean square error (RMSE) compared with the state-of-the-art algorithms. Besides, the impact of choices of different components and parameters of our proposed algorithm model is also studied thoroughly." @default.
- W2920996920 created "2019-03-22" @default.
- W2920996920 creator A5035282947 @default.
- W2920996920 creator A5048421740 @default.
- W2920996920 creator A5061813660 @default.
- W2920996920 creator A5071616764 @default.
- W2920996920 date "2019-01-01" @default.
- W2920996920 modified "2023-10-13" @default.
- W2920996920 title "Deep Auto Encoder Model With Convolutional Text Networks for Video Recommendation" @default.
- W2920996920 cites W1720514416 @default.
- W2920996920 cites W1981520019 @default.
- W2920996920 cites W2015682181 @default.
- W2920996920 cites W2071515987 @default.
- W2920996920 cites W2078863333 @default.
- W2920996920 cites W2085040216 @default.
- W2920996920 cites W2099866409 @default.
- W2920996920 cites W2206441274 @default.
- W2920996920 cites W2253995343 @default.
- W2920996920 cites W2408207485 @default.
- W2920996920 cites W2527419008 @default.
- W2920996920 cites W2575006718 @default.
- W2920996920 cites W2604662567 @default.
- W2920996920 cites W2739992143 @default.
- W2920996920 cites W2740920897 @default.
- W2920996920 cites W2744211163 @default.
- W2920996920 cites W2754943476 @default.
- W2920996920 cites W2781636776 @default.
- W2920996920 cites W2884001105 @default.
- W2920996920 cites W2891416925 @default.
- W2920996920 cites W2909127675 @default.
- W2920996920 cites W2963323306 @default.
- W2920996920 cites W3102560000 @default.
- W2920996920 cites W3102895136 @default.
- W2920996920 doi "https://doi.org/10.1109/access.2019.2905534" @default.
- W2920996920 hasPublicationYear "2019" @default.
- W2920996920 type Work @default.
- W2920996920 sameAs 2920996920 @default.
- W2920996920 citedByCount "18" @default.
- W2920996920 countsByYear W29209969202019 @default.
- W2920996920 countsByYear W29209969202020 @default.
- W2920996920 countsByYear W29209969202021 @default.
- W2920996920 countsByYear W29209969202022 @default.
- W2920996920 countsByYear W29209969202023 @default.
- W2920996920 crossrefType "journal-article" @default.
- W2920996920 hasAuthorship W2920996920A5035282947 @default.
- W2920996920 hasAuthorship W2920996920A5048421740 @default.
- W2920996920 hasAuthorship W2920996920A5061813660 @default.
- W2920996920 hasAuthorship W2920996920A5071616764 @default.
- W2920996920 hasBestOaLocation W29209969201 @default.
- W2920996920 hasConcept C101738243 @default.
- W2920996920 hasConcept C10551718 @default.
- W2920996920 hasConcept C105795698 @default.
- W2920996920 hasConcept C108583219 @default.
- W2920996920 hasConcept C111919701 @default.
- W2920996920 hasConcept C118505674 @default.
- W2920996920 hasConcept C119857082 @default.
- W2920996920 hasConcept C124101348 @default.
- W2920996920 hasConcept C138885662 @default.
- W2920996920 hasConcept C139945424 @default.
- W2920996920 hasConcept C153180895 @default.
- W2920996920 hasConcept C154945302 @default.
- W2920996920 hasConcept C178790620 @default.
- W2920996920 hasConcept C185592680 @default.
- W2920996920 hasConcept C21569690 @default.
- W2920996920 hasConcept C2776401178 @default.
- W2920996920 hasConcept C2779227376 @default.
- W2920996920 hasConcept C33923547 @default.
- W2920996920 hasConcept C34736171 @default.
- W2920996920 hasConcept C41008148 @default.
- W2920996920 hasConcept C41895202 @default.
- W2920996920 hasConcept C45347329 @default.
- W2920996920 hasConcept C50644808 @default.
- W2920996920 hasConcept C557471498 @default.
- W2920996920 hasConcept C58489278 @default.
- W2920996920 hasConceptScore W2920996920C101738243 @default.
- W2920996920 hasConceptScore W2920996920C10551718 @default.
- W2920996920 hasConceptScore W2920996920C105795698 @default.
- W2920996920 hasConceptScore W2920996920C108583219 @default.
- W2920996920 hasConceptScore W2920996920C111919701 @default.
- W2920996920 hasConceptScore W2920996920C118505674 @default.
- W2920996920 hasConceptScore W2920996920C119857082 @default.
- W2920996920 hasConceptScore W2920996920C124101348 @default.
- W2920996920 hasConceptScore W2920996920C138885662 @default.
- W2920996920 hasConceptScore W2920996920C139945424 @default.
- W2920996920 hasConceptScore W2920996920C153180895 @default.
- W2920996920 hasConceptScore W2920996920C154945302 @default.
- W2920996920 hasConceptScore W2920996920C178790620 @default.
- W2920996920 hasConceptScore W2920996920C185592680 @default.
- W2920996920 hasConceptScore W2920996920C21569690 @default.
- W2920996920 hasConceptScore W2920996920C2776401178 @default.
- W2920996920 hasConceptScore W2920996920C2779227376 @default.
- W2920996920 hasConceptScore W2920996920C33923547 @default.
- W2920996920 hasConceptScore W2920996920C34736171 @default.
- W2920996920 hasConceptScore W2920996920C41008148 @default.
- W2920996920 hasConceptScore W2920996920C41895202 @default.
- W2920996920 hasConceptScore W2920996920C45347329 @default.
- W2920996920 hasConceptScore W2920996920C50644808 @default.
- W2920996920 hasConceptScore W2920996920C557471498 @default.