Matches in SemOpenAlex for { <https://semopenalex.org/work/W2921008517> ?p ?o ?g. }
- W2921008517 endingPage "87" @default.
- W2921008517 startingPage "61" @default.
- W2921008517 abstract "A modern multimedia mining system needs to be able to handle large databases with varying formats at extreme speeds. These three attributes, volume, velocity and variety, together define big data primarily. This chapter presents the latest original research results of a showcase big data multimedia mining task by evaluating the pretrained convolutional neural network-based feature extraction through process parallelization, providing insight into the effectiveness and high capability of the proposed approach. It discusses the common strategies adopted to make data-mining scalable in terms of volume and velocity, when the variety of the data has been duly considered that is when the framework to represent the data in a consistent form is in place just as necessary. The chapter discusses scalability through feature engineering, which is just the process of intelligently picking the most relevant features going by the data modality and common queries." @default.
- W2921008517 created "2019-03-22" @default.
- W2921008517 creator A5010754413 @default.
- W2921008517 creator A5019825395 @default.
- W2921008517 creator A5039630062 @default.
- W2921008517 creator A5043060302 @default.
- W2921008517 creator A5072343742 @default.
- W2921008517 date "2019-03-15" @default.
- W2921008517 modified "2023-10-03" @default.
- W2921008517 title "Big Data Multimedia Mining: Feature Extraction Facing Volume, Velocity, and Variety" @default.
- W2921008517 cites W1506690472 @default.
- W2921008517 cites W1574845294 @default.
- W2921008517 cites W1581984155 @default.
- W2921008517 cites W1934184906 @default.
- W2921008517 cites W1947481528 @default.
- W2921008517 cites W1963616278 @default.
- W2921008517 cites W1982113214 @default.
- W2921008517 cites W2011301426 @default.
- W2921008517 cites W2014915963 @default.
- W2921008517 cites W2027090091 @default.
- W2921008517 cites W2063364984 @default.
- W2921008517 cites W2087937280 @default.
- W2921008517 cites W2093799708 @default.
- W2921008517 cites W2094087561 @default.
- W2921008517 cites W2098126593 @default.
- W2921008517 cites W2105628133 @default.
- W2921008517 cites W2111072639 @default.
- W2921008517 cites W2113902808 @default.
- W2921008517 cites W2118034653 @default.
- W2921008517 cites W2126337883 @default.
- W2921008517 cites W2137939562 @default.
- W2921008517 cites W2141362318 @default.
- W2921008517 cites W2146292423 @default.
- W2921008517 cites W2153635508 @default.
- W2921008517 cites W2163738013 @default.
- W2921008517 cites W2170059033 @default.
- W2921008517 cites W2174706414 @default.
- W2921008517 cites W2194775991 @default.
- W2921008517 cites W2513507089 @default.
- W2921008517 cites W2517101095 @default.
- W2921008517 cites W2536920793 @default.
- W2921008517 cites W2538918575 @default.
- W2921008517 cites W2604249033 @default.
- W2921008517 cites W2612919868 @default.
- W2921008517 cites W2746419079 @default.
- W2921008517 cites W2746502628 @default.
- W2921008517 cites W2952108874 @default.
- W2921008517 cites W2963467407 @default.
- W2921008517 cites W4237791300 @default.
- W2921008517 doi "https://doi.org/10.1002/9781119376996.ch3" @default.
- W2921008517 hasPublicationYear "2019" @default.
- W2921008517 type Work @default.
- W2921008517 sameAs 2921008517 @default.
- W2921008517 citedByCount "2" @default.
- W2921008517 countsByYear W29210085172020 @default.
- W2921008517 countsByYear W29210085172023 @default.
- W2921008517 crossrefType "other" @default.
- W2921008517 hasAuthorship W2921008517A5010754413 @default.
- W2921008517 hasAuthorship W2921008517A5019825395 @default.
- W2921008517 hasAuthorship W2921008517A5039630062 @default.
- W2921008517 hasAuthorship W2921008517A5043060302 @default.
- W2921008517 hasAuthorship W2921008517A5072343742 @default.
- W2921008517 hasConcept C111919701 @default.
- W2921008517 hasConcept C121332964 @default.
- W2921008517 hasConcept C124101348 @default.
- W2921008517 hasConcept C127413603 @default.
- W2921008517 hasConcept C136197465 @default.
- W2921008517 hasConcept C138885662 @default.
- W2921008517 hasConcept C154945302 @default.
- W2921008517 hasConcept C201995342 @default.
- W2921008517 hasConcept C20556612 @default.
- W2921008517 hasConcept C2522767166 @default.
- W2921008517 hasConcept C2776401178 @default.
- W2921008517 hasConcept C2780451532 @default.
- W2921008517 hasConcept C41008148 @default.
- W2921008517 hasConcept C41895202 @default.
- W2921008517 hasConcept C48044578 @default.
- W2921008517 hasConcept C52622490 @default.
- W2921008517 hasConcept C62520636 @default.
- W2921008517 hasConcept C75684735 @default.
- W2921008517 hasConcept C77088390 @default.
- W2921008517 hasConcept C81363708 @default.
- W2921008517 hasConcept C98045186 @default.
- W2921008517 hasConceptScore W2921008517C111919701 @default.
- W2921008517 hasConceptScore W2921008517C121332964 @default.
- W2921008517 hasConceptScore W2921008517C124101348 @default.
- W2921008517 hasConceptScore W2921008517C127413603 @default.
- W2921008517 hasConceptScore W2921008517C136197465 @default.
- W2921008517 hasConceptScore W2921008517C138885662 @default.
- W2921008517 hasConceptScore W2921008517C154945302 @default.
- W2921008517 hasConceptScore W2921008517C201995342 @default.
- W2921008517 hasConceptScore W2921008517C20556612 @default.
- W2921008517 hasConceptScore W2921008517C2522767166 @default.
- W2921008517 hasConceptScore W2921008517C2776401178 @default.
- W2921008517 hasConceptScore W2921008517C2780451532 @default.
- W2921008517 hasConceptScore W2921008517C41008148 @default.
- W2921008517 hasConceptScore W2921008517C41895202 @default.
- W2921008517 hasConceptScore W2921008517C48044578 @default.