Matches in SemOpenAlex for { <https://semopenalex.org/work/W2921024146> ?p ?o ?g. }
- W2921024146 endingPage "71" @default.
- W2921024146 startingPage "64" @default.
- W2921024146 abstract "The complicated interactions that occur in mixed-species biotechnologies, including biosensors, hinder chemical detection specificity. This lack of specificity limits applications in which biosensors may be deployed, such as those where an unknown feed substrate must be determined. The application of genomic data and well-developed data mining technologies can overcome these limitations and advance engineering development. In the present study, 69 samples with three different substrate types (acetate, carbohydrates and wastewater) collected from various laboratory environments were evaluated to determine the ability to identify feed substrates from the resultant microbial communities. Six machine learning algorithms with four different input variables were trained and evaluated on their ability to predict feed substrate from genomic datasets. The highest accuracies of 93 ± 6% and 92 ± 5% were obtained using NNET trained on datasets classified at the phylum and family taxonomic level, respectively. These accuracies corresponded to kappa values of 0.87 ± 0.10, 0.86 ± 0.09, respectively. Four out of six of the algorithms used maintained accuracies above 80% and kappa values higher than 0.66. Different sequencing method (Roche 454 or Illumina sequencing) did not affect the accuracies of all algorithms, except SVM at the phylum level. All algorithms trained on NMDS-compressed datasets obtained accuracies over 80%, while models trained on PCoA-compressed datasets presented a 10–30% reduction in accuracy. These results suggest that incorporating microbial community data with machine learning algorithms can be used for the prediction of feed substrate and for the potential improvement of MFC-based biosensor signal specificity, providing a new use of machine learning techniques that has substantial practical applications in biotechnological fields." @default.
- W2921024146 created "2019-03-22" @default.
- W2921024146 creator A5017013293 @default.
- W2921024146 creator A5023830542 @default.
- W2921024146 creator A5054861766 @default.
- W2921024146 creator A5056421877 @default.
- W2921024146 creator A5057287134 @default.
- W2921024146 creator A5068754949 @default.
- W2921024146 date "2019-05-01" @default.
- W2921024146 modified "2023-10-17" @default.
- W2921024146 title "Incorporating microbial community data with machine learning techniques to predict feed substrates in microbial fuel cells" @default.
- W2921024146 cites W1480172732 @default.
- W2921024146 cites W1505191356 @default.
- W2921024146 cites W1831050183 @default.
- W2921024146 cites W1878193911 @default.
- W2921024146 cites W1976261913 @default.
- W2921024146 cites W1981923178 @default.
- W2921024146 cites W1983693177 @default.
- W2921024146 cites W1986908904 @default.
- W2921024146 cites W1989919896 @default.
- W2921024146 cites W1994359868 @default.
- W2921024146 cites W1994793947 @default.
- W2921024146 cites W2002538871 @default.
- W2921024146 cites W2010503974 @default.
- W2921024146 cites W2020001867 @default.
- W2921024146 cites W2021498701 @default.
- W2921024146 cites W2027982242 @default.
- W2921024146 cites W2041139224 @default.
- W2921024146 cites W2043607438 @default.
- W2921024146 cites W2052684427 @default.
- W2921024146 cites W2058024023 @default.
- W2921024146 cites W2058622259 @default.
- W2921024146 cites W2061718127 @default.
- W2921024146 cites W2062848325 @default.
- W2921024146 cites W2072201700 @default.
- W2921024146 cites W2076777286 @default.
- W2921024146 cites W2085926377 @default.
- W2921024146 cites W2091374137 @default.
- W2921024146 cites W2108675784 @default.
- W2921024146 cites W2114769310 @default.
- W2921024146 cites W2118600923 @default.
- W2921024146 cites W2129297365 @default.
- W2921024146 cites W2131487336 @default.
- W2921024146 cites W2143481518 @default.
- W2921024146 cites W2152885278 @default.
- W2921024146 cites W2155632266 @default.
- W2921024146 cites W2157438966 @default.
- W2921024146 cites W2159728618 @default.
- W2921024146 cites W2159793693 @default.
- W2921024146 cites W2162368885 @default.
- W2921024146 cites W2163250554 @default.
- W2921024146 cites W2170024099 @default.
- W2921024146 cites W2318871708 @default.
- W2921024146 cites W2401404581 @default.
- W2921024146 cites W2510903809 @default.
- W2921024146 cites W2518065412 @default.
- W2921024146 cites W2528240835 @default.
- W2921024146 cites W2565346760 @default.
- W2921024146 cites W2592885887 @default.
- W2921024146 cites W2604068562 @default.
- W2921024146 cites W2730156053 @default.
- W2921024146 cites W2738030175 @default.
- W2921024146 cites W2741258480 @default.
- W2921024146 cites W2743021819 @default.
- W2921024146 cites W2748086219 @default.
- W2921024146 cites W2753518050 @default.
- W2921024146 cites W2756942789 @default.
- W2921024146 cites W2766761250 @default.
- W2921024146 cites W2767276447 @default.
- W2921024146 cites W2797979596 @default.
- W2921024146 cites W2802721802 @default.
- W2921024146 cites W2809214854 @default.
- W2921024146 cites W3102476541 @default.
- W2921024146 cites W4251229709 @default.
- W2921024146 doi "https://doi.org/10.1016/j.bios.2019.03.021" @default.
- W2921024146 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30909014" @default.
- W2921024146 hasPublicationYear "2019" @default.
- W2921024146 type Work @default.
- W2921024146 sameAs 2921024146 @default.
- W2921024146 citedByCount "52" @default.
- W2921024146 countsByYear W29210241462020 @default.
- W2921024146 countsByYear W29210241462021 @default.
- W2921024146 countsByYear W29210241462022 @default.
- W2921024146 countsByYear W29210241462023 @default.
- W2921024146 crossrefType "journal-article" @default.
- W2921024146 hasAuthorship W2921024146A5017013293 @default.
- W2921024146 hasAuthorship W2921024146A5023830542 @default.
- W2921024146 hasAuthorship W2921024146A5054861766 @default.
- W2921024146 hasAuthorship W2921024146A5056421877 @default.
- W2921024146 hasAuthorship W2921024146A5057287134 @default.
- W2921024146 hasAuthorship W2921024146A5068754949 @default.
- W2921024146 hasConcept C119857082 @default.
- W2921024146 hasConcept C12267149 @default.
- W2921024146 hasConcept C147789679 @default.
- W2921024146 hasConcept C153180895 @default.
- W2921024146 hasConcept C154945302 @default.
- W2921024146 hasConcept C165337572 @default.
- W2921024146 hasConcept C17525397 @default.