Matches in SemOpenAlex for { <https://semopenalex.org/work/W2921113485> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2921113485 abstract "Still image emotion recognition has been receiving increasing attention in recent years due to the tremendous amount of social media content available on the Web. Opinion mining, visual emotion analysis, search and retrieval are among the application areas, to name a few. While there exist works on the subject, offering methods to detect image sentiment; i.e. recognizing the polarity of the image, less efforts focus on emotion analysis; i.e. dealing with recognizing the exact emotion aroused when exposed to certain visual stimuli. Main gaps tackled in this work include (1) lack of large-scale image datasets for deep learning of visual emotions and (2) lack of context-sensitive single-modality approaches in emotion analysis in the still image domain. In this paper, we introduce LUCFER (Pronounced LU-CI-FER), a dataset containing over 3.6M images, with 3-dimensional labels; i.e. emotion, context and valence. LUCFER, the largest dataset of the kind currently available, is collected using a novel data collection pipeline, proposed and implemented in this work. Moreover, we train a context-sensitive deep classifier using a novel multinomial classification technique proposed here via adding a dimensionality reduction layer to the CNN. Relying on our categorical approach to emotion recognition, we claim and show empirically that injecting context to our unified training process helps (1) achieve a more balanced precision and recall, and (2) boost performance, yielding an overall classification accuracy of 73.12% compared to 58.3% achieved in the closest work in the literature." @default.
- W2921113485 created "2019-03-22" @default.
- W2921113485 creator A5010852815 @default.
- W2921113485 creator A5036305501 @default.
- W2921113485 creator A5076117344 @default.
- W2921113485 date "2019-01-01" @default.
- W2921113485 modified "2023-09-27" @default.
- W2921113485 title "LUCFER: A Large-Scale Context-Sensitive Image Dataset for Deep Learning of Visual Emotions" @default.
- W2921113485 cites W1506372339 @default.
- W2921113485 cites W1598862361 @default.
- W2921113485 cites W1950412479 @default.
- W2921113485 cites W1976322350 @default.
- W2921113485 cites W1978930475 @default.
- W2921113485 cites W2003856922 @default.
- W2921113485 cites W2053724458 @default.
- W2921113485 cites W2068124150 @default.
- W2921113485 cites W2068258779 @default.
- W2921113485 cites W2074356411 @default.
- W2921113485 cites W2082398333 @default.
- W2921113485 cites W2085940040 @default.
- W2921113485 cites W2086399953 @default.
- W2921113485 cites W2102381086 @default.
- W2921113485 cites W2117645142 @default.
- W2921113485 cites W2118526556 @default.
- W2921113485 cites W2134031328 @default.
- W2921113485 cites W2162745601 @default.
- W2921113485 cites W2171939880 @default.
- W2921113485 cites W2188772783 @default.
- W2921113485 cites W2574670802 @default.
- W2921113485 cites W2739474071 @default.
- W2921113485 cites W2741630455 @default.
- W2921113485 cites W2793857798 @default.
- W2921113485 cites W2798503473 @default.
- W2921113485 cites W2867696556 @default.
- W2921113485 cites W4256441345 @default.
- W2921113485 doi "https://doi.org/10.1109/wacv.2019.00180" @default.
- W2921113485 hasPublicationYear "2019" @default.
- W2921113485 type Work @default.
- W2921113485 sameAs 2921113485 @default.
- W2921113485 citedByCount "4" @default.
- W2921113485 countsByYear W29211134852021 @default.
- W2921113485 countsByYear W29211134852022 @default.
- W2921113485 crossrefType "proceedings-article" @default.
- W2921113485 hasAuthorship W2921113485A5010852815 @default.
- W2921113485 hasAuthorship W2921113485A5036305501 @default.
- W2921113485 hasAuthorship W2921113485A5076117344 @default.
- W2921113485 hasConcept C107457646 @default.
- W2921113485 hasConcept C108583219 @default.
- W2921113485 hasConcept C115961682 @default.
- W2921113485 hasConcept C127313418 @default.
- W2921113485 hasConcept C151730666 @default.
- W2921113485 hasConcept C154945302 @default.
- W2921113485 hasConcept C205649164 @default.
- W2921113485 hasConcept C2778755073 @default.
- W2921113485 hasConcept C2779343474 @default.
- W2921113485 hasConcept C31972630 @default.
- W2921113485 hasConcept C41008148 @default.
- W2921113485 hasConcept C58640448 @default.
- W2921113485 hasConceptScore W2921113485C107457646 @default.
- W2921113485 hasConceptScore W2921113485C108583219 @default.
- W2921113485 hasConceptScore W2921113485C115961682 @default.
- W2921113485 hasConceptScore W2921113485C127313418 @default.
- W2921113485 hasConceptScore W2921113485C151730666 @default.
- W2921113485 hasConceptScore W2921113485C154945302 @default.
- W2921113485 hasConceptScore W2921113485C205649164 @default.
- W2921113485 hasConceptScore W2921113485C2778755073 @default.
- W2921113485 hasConceptScore W2921113485C2779343474 @default.
- W2921113485 hasConceptScore W2921113485C31972630 @default.
- W2921113485 hasConceptScore W2921113485C41008148 @default.
- W2921113485 hasConceptScore W2921113485C58640448 @default.
- W2921113485 hasLocation W29211134851 @default.
- W2921113485 hasOpenAccess W2921113485 @default.
- W2921113485 hasPrimaryLocation W29211134851 @default.
- W2921113485 hasRelatedWork W1533292911 @default.
- W2921113485 hasRelatedWork W2005185696 @default.
- W2921113485 hasRelatedWork W2092957489 @default.
- W2921113485 hasRelatedWork W2130228941 @default.
- W2921113485 hasRelatedWork W2132132164 @default.
- W2921113485 hasRelatedWork W2161229648 @default.
- W2921113485 hasRelatedWork W2235753890 @default.
- W2921113485 hasRelatedWork W2737780766 @default.
- W2921113485 hasRelatedWork W2947175736 @default.
- W2921113485 hasRelatedWork W2993674027 @default.
- W2921113485 isParatext "false" @default.
- W2921113485 isRetracted "false" @default.
- W2921113485 magId "2921113485" @default.
- W2921113485 workType "article" @default.