Matches in SemOpenAlex for { <https://semopenalex.org/work/W2921118717> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2921118717 abstract "Abstract Production of oil & gas depends upon the recoverable amount of hydrocarbon existing beneath the underlying reservoir. Reservoir recovery factor provides of the production potential of ‘proven reservoirs’ which helps the planning of field development and production. Estimation of reservoir recovery factor, with a good degree of accuracy, is still a challenging task for engineers due to the high level of uncertainty, large inexactness, noise, and high dimensionality associated with reservoir measurements. In this paper, we propose a big data-driven ‘ensemble estimator’ (E2) module, comprising of wavelet associated ensemble models for the estimation of reservoir recovery factor. All the ensemble models in E2 were trained on big reservoir data and tested with unknown reservoir data samples obtained from U.S.A. oil & gas fields. Bagging and Random forest ensembles have been utilized to correlate several reservoir properties with reservoir recovery factor. Further, E2 utilizes Relief algorithm to understand the significance of reservoir properties effecting the recovery factor of a reservoir. The proposed E2 module has provided impressive estimation results for the determination of reservoir recovery factor with minimum prediction error. Random forest has given the highest coefficient of correlation (R2=0.9592) and minimum estimation errors viz. mean absolute error (MAE=0.0234) and root mean square error (RMSE=0.0687). The performance of the proposed E2 module was also compared with conventional estimators viz. Radial basis function, Multilayer perceptron, Regression tree and Support vector regression. The experimental results have demonstrated the supremacy of E2 over conventional learners for the estimation of reservoir recovery factor." @default.
- W2921118717 created "2019-03-22" @default.
- W2921118717 creator A5006423770 @default.
- W2921118717 creator A5006856709 @default.
- W2921118717 creator A5087814252 @default.
- W2921118717 date "2019-03-15" @default.
- W2921118717 modified "2023-09-23" @default.
- W2921118717 title "Assessment of Big Data Analytics Based Ensemble Estimator Module for the Real-Time Prediction of Reservoir Recovery Factor" @default.
- W2921118717 cites W1991374085 @default.
- W2921118717 cites W2106872600 @default.
- W2921118717 cites W2157124852 @default.
- W2921118717 cites W2167917621 @default.
- W2921118717 cites W2314671158 @default.
- W2921118717 cites W2462738471 @default.
- W2921118717 cites W2570995264 @default.
- W2921118717 cites W2900261140 @default.
- W2921118717 cites W2911964244 @default.
- W2921118717 cites W4212883601 @default.
- W2921118717 doi "https://doi.org/10.2118/194996-ms" @default.
- W2921118717 hasPublicationYear "2019" @default.
- W2921118717 type Work @default.
- W2921118717 sameAs 2921118717 @default.
- W2921118717 citedByCount "6" @default.
- W2921118717 countsByYear W29211187172020 @default.
- W2921118717 countsByYear W29211187172021 @default.
- W2921118717 countsByYear W29211187172022 @default.
- W2921118717 crossrefType "proceedings-article" @default.
- W2921118717 hasAuthorship W2921118717A5006423770 @default.
- W2921118717 hasAuthorship W2921118717A5006856709 @default.
- W2921118717 hasAuthorship W2921118717A5087814252 @default.
- W2921118717 hasConcept C105795698 @default.
- W2921118717 hasConcept C113215200 @default.
- W2921118717 hasConcept C11413529 @default.
- W2921118717 hasConcept C124101348 @default.
- W2921118717 hasConcept C127413603 @default.
- W2921118717 hasConcept C139945424 @default.
- W2921118717 hasConcept C154945302 @default.
- W2921118717 hasConcept C169258074 @default.
- W2921118717 hasConcept C185429906 @default.
- W2921118717 hasConcept C187320778 @default.
- W2921118717 hasConcept C2778668878 @default.
- W2921118717 hasConcept C33923547 @default.
- W2921118717 hasConcept C41008148 @default.
- W2921118717 hasConcept C46293882 @default.
- W2921118717 hasConcept C6648577 @default.
- W2921118717 hasConcept C78762247 @default.
- W2921118717 hasConcept C83546350 @default.
- W2921118717 hasConceptScore W2921118717C105795698 @default.
- W2921118717 hasConceptScore W2921118717C113215200 @default.
- W2921118717 hasConceptScore W2921118717C11413529 @default.
- W2921118717 hasConceptScore W2921118717C124101348 @default.
- W2921118717 hasConceptScore W2921118717C127413603 @default.
- W2921118717 hasConceptScore W2921118717C139945424 @default.
- W2921118717 hasConceptScore W2921118717C154945302 @default.
- W2921118717 hasConceptScore W2921118717C169258074 @default.
- W2921118717 hasConceptScore W2921118717C185429906 @default.
- W2921118717 hasConceptScore W2921118717C187320778 @default.
- W2921118717 hasConceptScore W2921118717C2778668878 @default.
- W2921118717 hasConceptScore W2921118717C33923547 @default.
- W2921118717 hasConceptScore W2921118717C41008148 @default.
- W2921118717 hasConceptScore W2921118717C46293882 @default.
- W2921118717 hasConceptScore W2921118717C6648577 @default.
- W2921118717 hasConceptScore W2921118717C78762247 @default.
- W2921118717 hasConceptScore W2921118717C83546350 @default.
- W2921118717 hasLocation W29211187171 @default.
- W2921118717 hasOpenAccess W2921118717 @default.
- W2921118717 hasPrimaryLocation W29211187171 @default.
- W2921118717 hasRelatedWork W106751956 @default.
- W2921118717 hasRelatedWork W1986362800 @default.
- W2921118717 hasRelatedWork W1999706086 @default.
- W2921118717 hasRelatedWork W2011023179 @default.
- W2921118717 hasRelatedWork W2017784796 @default.
- W2921118717 hasRelatedWork W2375284925 @default.
- W2921118717 hasRelatedWork W2794300563 @default.
- W2921118717 hasRelatedWork W2907746047 @default.
- W2921118717 hasRelatedWork W3125536267 @default.
- W2921118717 hasRelatedWork W2736582362 @default.
- W2921118717 isParatext "false" @default.
- W2921118717 isRetracted "false" @default.
- W2921118717 magId "2921118717" @default.
- W2921118717 workType "article" @default.