Matches in SemOpenAlex for { <https://semopenalex.org/work/W2921151229> ?p ?o ?g. }
- W2921151229 endingPage "492" @default.
- W2921151229 startingPage "482" @default.
- W2921151229 abstract "Leaf area index (LAI) and canopy water content (CWC) are important variables for monitoring crop growth and drought, which can be estimated from remotely sensed data. The goal of this study was to evaluate the suitability of the Sentinel-2 multispectral instrument (S2 MSI) data for winter wheat LAI and CWC estimation with three different inversion approaches in the main farming region in North China. During the winter wheat key growth stages in 2017, 22 fields, each with five independent samples, the total number of sample plot is 110, were designed for experimental measurements. In this study, the LAI and CWC were retrieved separately using empirical models through different spectral indices, neural network (NN) algorithms, and lookup table (LUT) methods based on the PROSAIL model. The accuracies of the estimated LAI and CWC were assessed through in situ measurements. The results show that the LUT inversion approach was more suitable for LAI and CWC estimation than the spectral index-based empirical model or the NN algorithm. With the LUT approach, LAI was obtained with a root mean square error (RMSE) of 0.43 m <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> ·m <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>-2</sup> and a relative RMSE (RRMSE) of 11% using seven S2 MSI bands, and CWC was obtained with an RMSE of 0.41 kg·m <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>-2</sup> , and an RRMSE of 32% using five S2 MSI bands. In all the three methods, S2 MSI was sensitive to LAI variation and able to reach higher accuracies when red edge bands were used. However, CWC inversion was still a challenge using S2 MSI data." @default.
- W2921151229 created "2019-03-22" @default.
- W2921151229 creator A5003108901 @default.
- W2921151229 creator A5021604608 @default.
- W2921151229 creator A5070702475 @default.
- W2921151229 creator A5077077869 @default.
- W2921151229 creator A5089098780 @default.
- W2921151229 date "2019-02-01" @default.
- W2921151229 modified "2023-10-06" @default.
- W2921151229 title "Modeling Winter Wheat Leaf Area Index and Canopy Water Content With Three Different Approaches Using Sentinel-2 Multispectral Instrument Data" @default.
- W2921151229 cites W1918142376 @default.
- W2921151229 cites W1966123034 @default.
- W2921151229 cites W1966854564 @default.
- W2921151229 cites W1976049210 @default.
- W2921151229 cites W1978815957 @default.
- W2921151229 cites W1985643287 @default.
- W2921151229 cites W1986812364 @default.
- W2921151229 cites W2008190217 @default.
- W2921151229 cites W2010979673 @default.
- W2921151229 cites W2013369959 @default.
- W2921151229 cites W2018494703 @default.
- W2921151229 cites W2022900594 @default.
- W2921151229 cites W2026316430 @default.
- W2921151229 cites W2034085189 @default.
- W2921151229 cites W2034650341 @default.
- W2921151229 cites W2037117298 @default.
- W2921151229 cites W2049398443 @default.
- W2921151229 cites W2058312673 @default.
- W2921151229 cites W2060426168 @default.
- W2921151229 cites W2065191898 @default.
- W2921151229 cites W2067703153 @default.
- W2921151229 cites W2071454092 @default.
- W2921151229 cites W2074869863 @default.
- W2921151229 cites W2080441468 @default.
- W2921151229 cites W2092796258 @default.
- W2921151229 cites W2095055020 @default.
- W2921151229 cites W2113410727 @default.
- W2921151229 cites W2136904244 @default.
- W2921151229 cites W2148900115 @default.
- W2921151229 cites W2151885382 @default.
- W2921151229 cites W2161815745 @default.
- W2921151229 cites W2167135978 @default.
- W2921151229 cites W2171063647 @default.
- W2921151229 cites W2235689173 @default.
- W2921151229 cites W2318242042 @default.
- W2921151229 cites W2342430100 @default.
- W2921151229 cites W2531109463 @default.
- W2921151229 cites W2609044008 @default.
- W2921151229 doi "https://doi.org/10.1109/jstars.2018.2855564" @default.
- W2921151229 hasPublicationYear "2019" @default.
- W2921151229 type Work @default.
- W2921151229 sameAs 2921151229 @default.
- W2921151229 citedByCount "30" @default.
- W2921151229 countsByYear W29211512292019 @default.
- W2921151229 countsByYear W29211512292020 @default.
- W2921151229 countsByYear W29211512292021 @default.
- W2921151229 countsByYear W29211512292022 @default.
- W2921151229 countsByYear W29211512292023 @default.
- W2921151229 crossrefType "journal-article" @default.
- W2921151229 hasAuthorship W2921151229A5003108901 @default.
- W2921151229 hasAuthorship W2921151229A5021604608 @default.
- W2921151229 hasAuthorship W2921151229A5070702475 @default.
- W2921151229 hasAuthorship W2921151229A5077077869 @default.
- W2921151229 hasAuthorship W2921151229A5089098780 @default.
- W2921151229 hasConcept C101000010 @default.
- W2921151229 hasConcept C104541649 @default.
- W2921151229 hasConcept C105795698 @default.
- W2921151229 hasConcept C128990827 @default.
- W2921151229 hasConcept C134835016 @default.
- W2921151229 hasConcept C139945424 @default.
- W2921151229 hasConcept C166957645 @default.
- W2921151229 hasConcept C173163844 @default.
- W2921151229 hasConcept C199360897 @default.
- W2921151229 hasConcept C205649164 @default.
- W2921151229 hasConcept C25989453 @default.
- W2921151229 hasConcept C33923547 @default.
- W2921151229 hasConcept C39432304 @default.
- W2921151229 hasConcept C41008148 @default.
- W2921151229 hasConcept C62649853 @default.
- W2921151229 hasConcept C6557445 @default.
- W2921151229 hasConcept C86803240 @default.
- W2921151229 hasConceptScore W2921151229C101000010 @default.
- W2921151229 hasConceptScore W2921151229C104541649 @default.
- W2921151229 hasConceptScore W2921151229C105795698 @default.
- W2921151229 hasConceptScore W2921151229C128990827 @default.
- W2921151229 hasConceptScore W2921151229C134835016 @default.
- W2921151229 hasConceptScore W2921151229C139945424 @default.
- W2921151229 hasConceptScore W2921151229C166957645 @default.
- W2921151229 hasConceptScore W2921151229C173163844 @default.
- W2921151229 hasConceptScore W2921151229C199360897 @default.
- W2921151229 hasConceptScore W2921151229C205649164 @default.
- W2921151229 hasConceptScore W2921151229C25989453 @default.
- W2921151229 hasConceptScore W2921151229C33923547 @default.
- W2921151229 hasConceptScore W2921151229C39432304 @default.
- W2921151229 hasConceptScore W2921151229C41008148 @default.
- W2921151229 hasConceptScore W2921151229C62649853 @default.
- W2921151229 hasConceptScore W2921151229C6557445 @default.
- W2921151229 hasConceptScore W2921151229C86803240 @default.