Matches in SemOpenAlex for { <https://semopenalex.org/work/W2921167217> ?p ?o ?g. }
- W2921167217 endingPage "265" @default.
- W2921167217 startingPage "239" @default.
- W2921167217 abstract "This chapter presents perceptual hashing technique together with a particular category of algorithms called perceptual hash algorithms. These algorithms are used for generating hash values from large-scale multimedia objects, such as images, audio, and video. The chapter focuses on unsupervised perceptual hash algorithms and supervised perceptual hash algorithms. Perceptual hashing is one of the approaches that seek compact representations of multimedia data. Perceptual hashing mainly consists of two parts: hash generation and hash verification. Hash generation is the focus of hash algorithm design. There are a few essential components: feature extraction, feature transformation, dimension reduction, quantization, and randomization. Hash verification is typically made simple in order to be fast. The basic properties of perceptual hashing are robustness and discrimination. Kernelized locality sensitive hashing is an extension of locality sensitive hashing. Semi-supervised hashing is a hash algorithm that takes both semantic relevance and maximal bit variance into account." @default.
- W2921167217 created "2019-03-22" @default.
- W2921167217 creator A5009970175 @default.
- W2921167217 creator A5066021753 @default.
- W2921167217 creator A5075510768 @default.
- W2921167217 date "2019-03-15" @default.
- W2921167217 modified "2023-09-23" @default.
- W2921167217 title "Perceptual Hashing for Large-Scale Multimedia Search" @default.
- W2921167217 cites W1510532633 @default.
- W2921167217 cites W1553128379 @default.
- W2921167217 cites W1566135517 @default.
- W2921167217 cites W189214596 @default.
- W2921167217 cites W1893754589 @default.
- W2921167217 cites W1966385142 @default.
- W2921167217 cites W1972036246 @default.
- W2921167217 cites W1974647172 @default.
- W2921167217 cites W1989368986 @default.
- W2921167217 cites W1990537115 @default.
- W2921167217 cites W1993417448 @default.
- W2921167217 cites W2005126631 @default.
- W2921167217 cites W2005136695 @default.
- W2921167217 cites W2006554089 @default.
- W2921167217 cites W2019586918 @default.
- W2921167217 cites W2020498246 @default.
- W2921167217 cites W2029205712 @default.
- W2921167217 cites W2044195942 @default.
- W2921167217 cites W2057069782 @default.
- W2921167217 cites W2066993276 @default.
- W2921167217 cites W2074668987 @default.
- W2921167217 cites W2084363474 @default.
- W2921167217 cites W2093324194 @default.
- W2921167217 cites W2100483895 @default.
- W2921167217 cites W2100495367 @default.
- W2921167217 cites W2108523493 @default.
- W2921167217 cites W2109025268 @default.
- W2921167217 cites W2116064496 @default.
- W2921167217 cites W2116810533 @default.
- W2921167217 cites W2117684310 @default.
- W2921167217 cites W2124509324 @default.
- W2921167217 cites W2131846894 @default.
- W2921167217 cites W2143321506 @default.
- W2921167217 cites W2144530948 @default.
- W2921167217 cites W2146874154 @default.
- W2921167217 cites W2150593711 @default.
- W2921167217 cites W2151554678 @default.
- W2921167217 cites W2154956324 @default.
- W2921167217 cites W2171790913 @default.
- W2921167217 cites W2194775991 @default.
- W2921167217 cites W2462806717 @default.
- W2921167217 cites W2586937979 @default.
- W2921167217 cites W2608260771 @default.
- W2921167217 cites W2805134925 @default.
- W2921167217 cites W2913932916 @default.
- W2921167217 cites W2919115771 @default.
- W2921167217 cites W2951019013 @default.
- W2921167217 cites W2963213486 @default.
- W2921167217 cites W3152330821 @default.
- W2921167217 cites W4212863985 @default.
- W2921167217 cites W4244017338 @default.
- W2921167217 doi "https://doi.org/10.1002/9781119376996.ch9" @default.
- W2921167217 hasPublicationYear "2019" @default.
- W2921167217 type Work @default.
- W2921167217 sameAs 2921167217 @default.
- W2921167217 citedByCount "2" @default.
- W2921167217 countsByYear W29211672172019 @default.
- W2921167217 countsByYear W29211672172021 @default.
- W2921167217 crossrefType "other" @default.
- W2921167217 hasAuthorship W2921167217A5009970175 @default.
- W2921167217 hasAuthorship W2921167217A5066021753 @default.
- W2921167217 hasAuthorship W2921167217A5075510768 @default.
- W2921167217 hasConcept C116058348 @default.
- W2921167217 hasConcept C122907437 @default.
- W2921167217 hasConcept C133667856 @default.
- W2921167217 hasConcept C138111711 @default.
- W2921167217 hasConcept C153180895 @default.
- W2921167217 hasConcept C154945302 @default.
- W2921167217 hasConcept C27353603 @default.
- W2921167217 hasConcept C36375716 @default.
- W2921167217 hasConcept C38652104 @default.
- W2921167217 hasConcept C41008148 @default.
- W2921167217 hasConcept C67388219 @default.
- W2921167217 hasConcept C74270461 @default.
- W2921167217 hasConcept C80444323 @default.
- W2921167217 hasConcept C99138194 @default.
- W2921167217 hasConceptScore W2921167217C116058348 @default.
- W2921167217 hasConceptScore W2921167217C122907437 @default.
- W2921167217 hasConceptScore W2921167217C133667856 @default.
- W2921167217 hasConceptScore W2921167217C138111711 @default.
- W2921167217 hasConceptScore W2921167217C153180895 @default.
- W2921167217 hasConceptScore W2921167217C154945302 @default.
- W2921167217 hasConceptScore W2921167217C27353603 @default.
- W2921167217 hasConceptScore W2921167217C36375716 @default.
- W2921167217 hasConceptScore W2921167217C38652104 @default.
- W2921167217 hasConceptScore W2921167217C41008148 @default.
- W2921167217 hasConceptScore W2921167217C67388219 @default.
- W2921167217 hasConceptScore W2921167217C74270461 @default.
- W2921167217 hasConceptScore W2921167217C80444323 @default.
- W2921167217 hasConceptScore W2921167217C99138194 @default.