Matches in SemOpenAlex for { <https://semopenalex.org/work/W2921169870> ?p ?o ?g. }
- W2921169870 abstract "This paper presents a novel phase reconstruction method (only from a given amplitude spectrogram) by combining a signal-processing-based approach and a deep neural network (DNN). To retrieve a time-domain signal from its amplitude spectrogram, the corresponding phase is required. One of the popular phase reconstruction methods is the Griffin-Lim algorithm (GLA), which is based on the redundancy of the short-time Fourier transform. However, GLA often involves many iterations and produces low-quality signals owing to the lack of prior knowledge of the target signal. In order to address these issues, in this study, we propose an architecture which stacks a sub-block including two GLA-inspired fixed layers and a DNN. The number of stacked sub-blocks is adjustable, and we can trade the performance and computational load based on requirements of applications. The effectiveness of the proposed method is investigated by reconstructing phases from amplitude spectrograms of speeches." @default.
- W2921169870 created "2019-03-22" @default.
- W2921169870 creator A5015534419 @default.
- W2921169870 creator A5028428935 @default.
- W2921169870 creator A5034837951 @default.
- W2921169870 creator A5042385500 @default.
- W2921169870 creator A5054467679 @default.
- W2921169870 date "2019-03-10" @default.
- W2921169870 modified "2023-09-27" @default.
- W2921169870 title "Deep Griffin-Lim Iteration" @default.
- W2921169870 cites W1552314771 @default.
- W2921169870 cites W1831449718 @default.
- W2921169870 cites W2041498927 @default.
- W2921169870 cites W2070126272 @default.
- W2921169870 cites W2087416986 @default.
- W2921169870 cites W2095072097 @default.
- W2921169870 cites W2118103795 @default.
- W2921169870 cites W2120847449 @default.
- W2921169870 cites W2141998673 @default.
- W2921169870 cites W2152859600 @default.
- W2921169870 cites W2194775991 @default.
- W2921169870 cites W2345844407 @default.
- W2921169870 cites W2407185622 @default.
- W2921169870 cites W2508457857 @default.
- W2921169870 cites W2552808051 @default.
- W2921169870 cites W2567070169 @default.
- W2921169870 cites W2573726823 @default.
- W2921169870 cites W2613155248 @default.
- W2921169870 cites W2619204584 @default.
- W2921169870 cites W2741913599 @default.
- W2921169870 cites W2749881488 @default.
- W2921169870 cites W2775265115 @default.
- W2921169870 cites W2800537612 @default.
- W2921169870 cites W2807065297 @default.
- W2921169870 cites W2874689226 @default.
- W2921169870 cites W2889134433 @default.
- W2921169870 cites W2894785362 @default.
- W2921169870 cites W2899993083 @default.
- W2921169870 cites W2900132857 @default.
- W2921169870 cites W2900330341 @default.
- W2921169870 cites W2902806197 @default.
- W2921169870 cites W2962905190 @default.
- W2921169870 cites W2964328256 @default.
- W2921169870 doi "https://doi.org/10.48550/arxiv.1903.03971" @default.
- W2921169870 hasPublicationYear "2019" @default.
- W2921169870 type Work @default.
- W2921169870 sameAs 2921169870 @default.
- W2921169870 citedByCount "1" @default.
- W2921169870 countsByYear W29211698702018 @default.
- W2921169870 crossrefType "posted-content" @default.
- W2921169870 hasAuthorship W2921169870A5015534419 @default.
- W2921169870 hasAuthorship W2921169870A5028428935 @default.
- W2921169870 hasAuthorship W2921169870A5034837951 @default.
- W2921169870 hasAuthorship W2921169870A5042385500 @default.
- W2921169870 hasAuthorship W2921169870A5054467679 @default.
- W2921169870 hasBestOaLocation W29211698701 @default.
- W2921169870 hasConcept C102519508 @default.
- W2921169870 hasConcept C103824480 @default.
- W2921169870 hasConcept C104267543 @default.
- W2921169870 hasConcept C111919701 @default.
- W2921169870 hasConcept C11413529 @default.
- W2921169870 hasConcept C120665830 @default.
- W2921169870 hasConcept C121332964 @default.
- W2921169870 hasConcept C134306372 @default.
- W2921169870 hasConcept C152124472 @default.
- W2921169870 hasConcept C154945302 @default.
- W2921169870 hasConcept C166957645 @default.
- W2921169870 hasConcept C180205008 @default.
- W2921169870 hasConcept C19118579 @default.
- W2921169870 hasConcept C199360897 @default.
- W2921169870 hasConcept C2524010 @default.
- W2921169870 hasConcept C2775969163 @default.
- W2921169870 hasConcept C2777210771 @default.
- W2921169870 hasConcept C2779843651 @default.
- W2921169870 hasConcept C28490314 @default.
- W2921169870 hasConcept C31972630 @default.
- W2921169870 hasConcept C33923547 @default.
- W2921169870 hasConcept C41008148 @default.
- W2921169870 hasConcept C44280652 @default.
- W2921169870 hasConcept C45273575 @default.
- W2921169870 hasConcept C50644808 @default.
- W2921169870 hasConcept C554190296 @default.
- W2921169870 hasConcept C62520636 @default.
- W2921169870 hasConcept C76155785 @default.
- W2921169870 hasConcept C95457728 @default.
- W2921169870 hasConceptScore W2921169870C102519508 @default.
- W2921169870 hasConceptScore W2921169870C103824480 @default.
- W2921169870 hasConceptScore W2921169870C104267543 @default.
- W2921169870 hasConceptScore W2921169870C111919701 @default.
- W2921169870 hasConceptScore W2921169870C11413529 @default.
- W2921169870 hasConceptScore W2921169870C120665830 @default.
- W2921169870 hasConceptScore W2921169870C121332964 @default.
- W2921169870 hasConceptScore W2921169870C134306372 @default.
- W2921169870 hasConceptScore W2921169870C152124472 @default.
- W2921169870 hasConceptScore W2921169870C154945302 @default.
- W2921169870 hasConceptScore W2921169870C166957645 @default.
- W2921169870 hasConceptScore W2921169870C180205008 @default.
- W2921169870 hasConceptScore W2921169870C19118579 @default.
- W2921169870 hasConceptScore W2921169870C199360897 @default.
- W2921169870 hasConceptScore W2921169870C2524010 @default.