Matches in SemOpenAlex for { <https://semopenalex.org/work/W2921350794> ?p ?o ?g. }
- W2921350794 endingPage "502" @default.
- W2921350794 startingPage "487" @default.
- W2921350794 abstract "Abstract In the paper we present results of accuracy evaluation of numerous numerical algorithms for the numerical approximation of the Inverse Laplace Transform. The selected algorithms represent diverse lines of approach to this problem and include methods by Stehfest, Abate and Whitt, Vlach and Singhai, De Hoog, Talbot, Zakian and a one in which the FFT is applied for the Fourier series convergence acceleration. We use C++ and Python languages with arbitrary precision mathematical libraries to address some crucial issues of numerical implementation. The test set includes Laplace transforms considered as difficult to compute as well as some others commonly applied in fractional calculus. Evaluation results enable to conclude that the Talbot method which involves deformed Bromwich contour integration, the De Hoog and the Abate and Whitt methods using Fourier series expansion with accelerated convergence can be assumed as general purpose high-accuracy algorithms. They can be applied to a wide variety of inversion problems." @default.
- W2921350794 created "2019-03-22" @default.
- W2921350794 creator A5051992194 @default.
- W2921350794 date "2018-07-01" @default.
- W2921350794 modified "2023-10-16" @default.
- W2921350794 title "Review of numerical methods for NumILPT with computational accuracy assessment for fractional calculus" @default.
- W2921350794 cites W1577201783 @default.
- W2921350794 cites W1970989579 @default.
- W2921350794 cites W1980170802 @default.
- W2921350794 cites W1986372629 @default.
- W2921350794 cites W2005669138 @default.
- W2921350794 cites W2023558112 @default.
- W2921350794 cites W2037007846 @default.
- W2921350794 cites W2042084825 @default.
- W2921350794 cites W2046131409 @default.
- W2921350794 cites W2054549017 @default.
- W2921350794 cites W2056795592 @default.
- W2921350794 cites W2057269262 @default.
- W2921350794 cites W2057342974 @default.
- W2921350794 cites W2079491906 @default.
- W2921350794 cites W2083372910 @default.
- W2921350794 cites W2091227064 @default.
- W2921350794 cites W2092709797 @default.
- W2921350794 cites W2094337817 @default.
- W2921350794 cites W2117069093 @default.
- W2921350794 cites W2135094424 @default.
- W2921350794 cites W2144005441 @default.
- W2921350794 cites W2171640513 @default.
- W2921350794 cites W2172108608 @default.
- W2921350794 cites W2291960678 @default.
- W2921350794 cites W4239838448 @default.
- W2921350794 cites W4244854774 @default.
- W2921350794 cites W4247953052 @default.
- W2921350794 cites W4254080713 @default.
- W2921350794 cites W827447899 @default.
- W2921350794 doi "https://doi.org/10.2478/amns.2018.2.00038" @default.
- W2921350794 hasPublicationYear "2018" @default.
- W2921350794 type Work @default.
- W2921350794 sameAs 2921350794 @default.
- W2921350794 citedByCount "59" @default.
- W2921350794 countsByYear W29213507942019 @default.
- W2921350794 countsByYear W29213507942020 @default.
- W2921350794 countsByYear W29213507942021 @default.
- W2921350794 countsByYear W29213507942022 @default.
- W2921350794 countsByYear W29213507942023 @default.
- W2921350794 crossrefType "journal-article" @default.
- W2921350794 hasAuthorship W2921350794A5051992194 @default.
- W2921350794 hasBestOaLocation W29213507941 @default.
- W2921350794 hasConcept C11413529 @default.
- W2921350794 hasConcept C126255220 @default.
- W2921350794 hasConcept C134306372 @default.
- W2921350794 hasConcept C162324750 @default.
- W2921350794 hasConcept C199343813 @default.
- W2921350794 hasConcept C207467116 @default.
- W2921350794 hasConcept C2524010 @default.
- W2921350794 hasConcept C2777303404 @default.
- W2921350794 hasConcept C2777686260 @default.
- W2921350794 hasConcept C28826006 @default.
- W2921350794 hasConcept C33923547 @default.
- W2921350794 hasConcept C41008148 @default.
- W2921350794 hasConcept C48753275 @default.
- W2921350794 hasConcept C50522688 @default.
- W2921350794 hasConcept C60455284 @default.
- W2921350794 hasConcept C71924100 @default.
- W2921350794 hasConcept C75172450 @default.
- W2921350794 hasConcept C97937538 @default.
- W2921350794 hasConceptScore W2921350794C11413529 @default.
- W2921350794 hasConceptScore W2921350794C126255220 @default.
- W2921350794 hasConceptScore W2921350794C134306372 @default.
- W2921350794 hasConceptScore W2921350794C162324750 @default.
- W2921350794 hasConceptScore W2921350794C199343813 @default.
- W2921350794 hasConceptScore W2921350794C207467116 @default.
- W2921350794 hasConceptScore W2921350794C2524010 @default.
- W2921350794 hasConceptScore W2921350794C2777303404 @default.
- W2921350794 hasConceptScore W2921350794C2777686260 @default.
- W2921350794 hasConceptScore W2921350794C28826006 @default.
- W2921350794 hasConceptScore W2921350794C33923547 @default.
- W2921350794 hasConceptScore W2921350794C41008148 @default.
- W2921350794 hasConceptScore W2921350794C48753275 @default.
- W2921350794 hasConceptScore W2921350794C50522688 @default.
- W2921350794 hasConceptScore W2921350794C60455284 @default.
- W2921350794 hasConceptScore W2921350794C71924100 @default.
- W2921350794 hasConceptScore W2921350794C75172450 @default.
- W2921350794 hasConceptScore W2921350794C97937538 @default.
- W2921350794 hasIssue "2" @default.
- W2921350794 hasLocation W29213507941 @default.
- W2921350794 hasLocation W29213507942 @default.
- W2921350794 hasOpenAccess W2921350794 @default.
- W2921350794 hasPrimaryLocation W29213507941 @default.
- W2921350794 hasRelatedWork W1702146643 @default.
- W2921350794 hasRelatedWork W1987801733 @default.
- W2921350794 hasRelatedWork W1996624184 @default.
- W2921350794 hasRelatedWork W2000021687 @default.
- W2921350794 hasRelatedWork W2040667198 @default.
- W2921350794 hasRelatedWork W2069567745 @default.
- W2921350794 hasRelatedWork W2135639643 @default.
- W2921350794 hasRelatedWork W2144227302 @default.
- W2921350794 hasRelatedWork W2543310947 @default.