Matches in SemOpenAlex for { <https://semopenalex.org/work/W2921476319> ?p ?o ?g. }
- W2921476319 endingPage "182" @default.
- W2921476319 startingPage "170" @default.
- W2921476319 abstract "Currently, haze events in winter occur more frequently than decades ago, especially in Eastern and Central China, including the Yangtze River Delta (YRD). WRF-Chem is applied in this study to explore the discrepancies of the simulated air pollutants induced by employing different emission inventories, particularly during haze events. Two inventories are involved in this study, MEIC (Multi-resolution Emission Inventory for China) and GlobEmission (inventory from GlobEmission project emission estimates), representing the emission inventories based on quite different ways. We first compared monthly emissions of SO2 and NOx in two inventories during January over YRD, and found the mean differences of SO2 (NOx) are 20% (7%), with the ranges of 0%–47% (−100%–100%). The largest differences are both found in Shanghai, with 47% for SO2 (MEIC in 2010, GlobEmission in 2014), and 45% for NOx (MEIC in 2010, GlobEmission in 2015), respectively, partly because the reduction of emissions was large during the 12th Five-Year Plan (2011–2015) in this area. By comparing the simulated air pollutants mass concentrations using two inventories with in-situ observations during January 2015, we found that the simulated SO2 using MEIC and GlobEmission are both higher than observations, with mean normalized biases of 207% and 121% over YRD, respectively, and much larger in the city cluster of Nanjing-Shanghai, where are nearly four (MEIC) and three times (GlobEmission) higher than observations. In contrast, NO2 simulations using GlobEmission are lower than observations (22%) and MEIC simulations (45%) over YRD. The largest biases of GlobEmission simulation are found in Zhejiang province (over 70%). The biases of simulated monthly mean PM2.5 are 38% (MEIC) and 30% (GlobEmission) over YRD, respectively. A case study during heavy haze event shows that the biases increase to 61% (MEIC) and 39% (GlobEmission), and spatial correlation coefficient in the simulation using GlobEmission increase to 0.69 over YRD. Temporal correlation coefficients in the city cluster of Nanjing-Shanghai increase from 0.5 (MEIC) to 0.7 (GlobEmission)." @default.
- W2921476319 created "2019-03-22" @default.
- W2921476319 creator A5040941925 @default.
- W2921476319 creator A5041363891 @default.
- W2921476319 creator A5043695676 @default.
- W2921476319 creator A5043836091 @default.
- W2921476319 creator A5065970994 @default.
- W2921476319 creator A5073092281 @default.
- W2921476319 creator A5076250700 @default.
- W2921476319 date "2019-06-01" @default.
- W2921476319 modified "2023-09-26" @default.
- W2921476319 title "Exploring the influence of two inventories on simulated air pollutants during winter over the Yangtze River Delta" @default.
- W2921476319 cites W1492382823 @default.
- W2921476319 cites W1510661570 @default.
- W2921476319 cites W1573819022 @default.
- W2921476319 cites W1841136326 @default.
- W2921476319 cites W1973159294 @default.
- W2921476319 cites W1988234401 @default.
- W2921476319 cites W1992739954 @default.
- W2921476319 cites W2004479151 @default.
- W2921476319 cites W2028979275 @default.
- W2921476319 cites W2036980759 @default.
- W2921476319 cites W2039240409 @default.
- W2921476319 cites W2044092103 @default.
- W2921476319 cites W2051988240 @default.
- W2921476319 cites W2067318157 @default.
- W2921476319 cites W2069461209 @default.
- W2921476319 cites W2072692927 @default.
- W2921476319 cites W2074599408 @default.
- W2921476319 cites W2087693653 @default.
- W2921476319 cites W2100423644 @default.
- W2921476319 cites W2107051381 @default.
- W2921476319 cites W2110179017 @default.
- W2921476319 cites W2115710759 @default.
- W2921476319 cites W2121690346 @default.
- W2921476319 cites W2129437219 @default.
- W2921476319 cites W2144574762 @default.
- W2921476319 cites W2151181273 @default.
- W2921476319 cites W2157514034 @default.
- W2921476319 cites W2164474809 @default.
- W2921476319 cites W2314999404 @default.
- W2921476319 cites W2335969118 @default.
- W2921476319 cites W2339599227 @default.
- W2921476319 cites W2340578935 @default.
- W2921476319 cites W2402894798 @default.
- W2921476319 cites W2529832521 @default.
- W2921476319 cites W2536372953 @default.
- W2921476319 cites W2545107487 @default.
- W2921476319 cites W2546687420 @default.
- W2921476319 cites W2551483270 @default.
- W2921476319 cites W2554285426 @default.
- W2921476319 cites W2564015495 @default.
- W2921476319 cites W2575591472 @default.
- W2921476319 cites W2579196193 @default.
- W2921476319 cites W2604913335 @default.
- W2921476319 cites W2619056591 @default.
- W2921476319 cites W2742501595 @default.
- W2921476319 cites W2756356287 @default.
- W2921476319 cites W2783794519 @default.
- W2921476319 cites W2803785277 @default.
- W2921476319 cites W2917213968 @default.
- W2921476319 cites W3127333225 @default.
- W2921476319 doi "https://doi.org/10.1016/j.atmosenv.2019.03.006" @default.
- W2921476319 hasPublicationYear "2019" @default.
- W2921476319 type Work @default.
- W2921476319 sameAs 2921476319 @default.
- W2921476319 citedByCount "18" @default.
- W2921476319 countsByYear W29214763192019 @default.
- W2921476319 countsByYear W29214763192020 @default.
- W2921476319 countsByYear W29214763192021 @default.
- W2921476319 countsByYear W29214763192022 @default.
- W2921476319 countsByYear W29214763192023 @default.
- W2921476319 crossrefType "journal-article" @default.
- W2921476319 hasAuthorship W2921476319A5040941925 @default.
- W2921476319 hasAuthorship W2921476319A5041363891 @default.
- W2921476319 hasAuthorship W2921476319A5043695676 @default.
- W2921476319 hasAuthorship W2921476319A5043836091 @default.
- W2921476319 hasAuthorship W2921476319A5065970994 @default.
- W2921476319 hasAuthorship W2921476319A5073092281 @default.
- W2921476319 hasAuthorship W2921476319A5076250700 @default.
- W2921476319 hasConcept C105923489 @default.
- W2921476319 hasConcept C126314574 @default.
- W2921476319 hasConcept C127313418 @default.
- W2921476319 hasConcept C127413603 @default.
- W2921476319 hasConcept C146978453 @default.
- W2921476319 hasConcept C148383697 @default.
- W2921476319 hasConcept C153294291 @default.
- W2921476319 hasConcept C166957645 @default.
- W2921476319 hasConcept C178790620 @default.
- W2921476319 hasConcept C185592680 @default.
- W2921476319 hasConcept C191935318 @default.
- W2921476319 hasConcept C203032635 @default.
- W2921476319 hasConcept C205649164 @default.
- W2921476319 hasConcept C2776720842 @default.
- W2921476319 hasConcept C2987853052 @default.
- W2921476319 hasConcept C3018003528 @default.
- W2921476319 hasConcept C3020197183 @default.
- W2921476319 hasConcept C39432304 @default.